CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTERS IN PURE MATHEMATICS

MATH 814: OPERATOR THEORY

STREAMS: PART TIME

TIME: 3 HOURS

DAY/DATE: WEDNESDAY 7/4/2021 INSTRUCTIONS:

2.30 PM – 5.30PM

- Answer ANY three questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (20 MARKS)

- a) State and prove the Existence Theorem for non-linear operator. (5 marks)
- **b)** Let $T: l_2 \rightarrow l_2$ be a bounded linear operator on l_2 defined by

 $T(x_1, x_2, x_3, ...) = (-x_1, -x_2, -x_3, ...)$ for every $x \in \{x_i\}_{i=1}^{\infty} \in I_2$. Find the Eigen values of *T*. (3 marks)

- c) Let P_1 and P_2 be projections on a Hilbert space H onto Y_1 and Y_2 respectively. If $P_1 P_2 = P_2 P_1$, show that $P = P_1 + P_2 P_1 P_2$ is a projection. (4 marks)
- d) Prove that the set of distinct nonzero Eigen values $\{\lambda_n\}$ of a self adjoint compact operator *T* is either finite or $\lim_{n \to \infty} \lambda_n = 0$. (4 marks)

MATH 814

e) Given the matrix
$$X = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
 find the spectrum of X , $\delta(X)$ and the resolvent set of X , $\rho(X)$. (4 marks)

QUESTION TWO (20 MARKS)

- a) Prove that if P is a projection then there exists a closed linear subspace M of H such that $P=P_M$ or $P_M(H)=M$. (5 marks)
- **b)** If a sum $P_1 + P_2 + P_3 + \dots + P_n$ of projections $P_j : H \to H$ is a projection, show that $\iota |P_1| \lor \iota^2 + \iota |P_2| \lor \iota^2 + \iota |P_3| \lor \iota^2 + \dots + \iota |P_n| \lor \iota^2 \iota \iota \iota \iota$. (4 marks)
- c) Let *H* be a Hilbert space and *M* be a linear closed subspace of *H* ad $y \in Hi$ then show that iy - py, x > i0 for all $x \in M$. (4 marks)
- d) Prove S is a bounded linear operator on a Banach Space X and

$$\|S\| < \|\lambda\|, S_{\lambda} = (\lambda I - S)^{-I} \text{ is bounded then } S_{\lambda} = \sum_{n=0}^{\infty} \frac{S^n}{\lambda^{n+1}} \land \|S_{\lambda}\| \le \frac{1}{|\lambda| - \iota|S| \lor \iota \iota}.$$
(5)

marks)

e) State without proof Lax- Milgram Lemma. (2 marks)

QUESTION THREE (20 MARKS)

- a) Prove that a bounded linear operator P:H → H on a Hilbert space is a projection if and only if P is self adjoint and idempotent. (8 marks)
- b) Prove that if the resolvent set, $\rho(T)$ of a bounded linear operator *T* on a complex Banach space *X* is open then the spectrum $\sigma(T)$ is closed. (5 marks)
- c) Let $T, S \in B(X)$. Show that if T is invertible and $i \lor T S \lor i < \frac{1}{i \lor T^{-1} \lor i}$ then S is invertible.

(3 marks)

d) Let $T \in B(X)$. Show that TT^{i} and $T^{i}T$ are self adjoint and positive and the spectra of TT^{i} and $T^{i}T$ are real and does not contain negative values. (4 marks)

MATH 814

QUESTION FOUR (20 MARKS)

- a) Let *H* be a Hilbert space and let $T \in B(H)$
 - i. Define the numerical range of T, denoted by Num(T). (2 marks)
 - ii. Prove that i < Tx, $x > i \ge Ci |x| \lor i^2 i$ for all $x \in H$ and C > 0 then T is invertible and

$$\dot{c} \left| T^{-I} \right| \lor \leq \frac{1}{C}. \tag{3 marks}$$

iii. Prove that $\delta(T) \subseteq \overline{Num(T)}$. (5 marks)

b) Find the Neumann Series solution of the integral equation $f(x) = x + \frac{1}{2} \int_{-1}^{1} (t-x)(t) dt$

(6 marks)

c) Show that the bounded linear operator T is normal *iff* T = A + iB where $A \wedge B$ are self adjoint operators with $AB = BA \wedge T T^i = A^2 + B^2$. (4 marks)

.....