CHUKA UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTERS OF SCIENCE IN APPLIED STATISTICS

MATH 845: STATISTICAL INFERENCE

STREAMS: MSc (App Stat)

TIME: 3 HOURS

DAY/DATE: MARCH 2021

INSTRUCTIONS:

• Answer ANY THREE Questions.

QUESTION ONE [20 MARKS]

- a) Define the terms given below illustrating with an example
 - i) Ancilliarity
 - ii) Asymptotically efficient estimator
 - iii) Invariant test (6 marks)
- b) Suppose that $x_1, x_2, x_3, ..., x_n$ i.i.d Bernoulli(p)
 - i) Find the maximum likelihood estimator (MLE) for p (3 marks)
 - ii) Find the standard error estimate for p using the Fisher Information. (6 marks)
 - iii) Taking $\alpha = 0.05$, construct an asymptotic confidence interval for p. (5 marks)

QUESTION TWO [20 MARKS]

a) Consider a random sample of n independent random variables $Y_1, Y_2, Y_3, \dots, Y_n$ be i. i. d B (1, θ) with p.m.f.

$$f(x,\theta) = \begin{cases} \theta^{x} (1-\theta)^{1-x}, x = 0, 1\\ 0, otherwise \end{cases}$$

Find a minimal sufficient statistic for θ . (10 marks)

b) Let $x_1, x_2, x_3, ..., x_n$ i.i.d $N(\mu, \sigma^2)$ where μ and σ^2 are unknown.

Show that
$$T = \left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{k} x_i^2\right)$$
 is:

i) A 2-parameter exponential family

ii) A complete and sufficient statistic for $\theta = (\mu, \sigma^2)$ (10 marks)

QUESTION THREE [20 MARKS]

a) Let $y_1, y_2, y_3, \dots, y_n$ be i. i. d Bernoulli (1, p) random variables with p.m.f.

$$f(x,p) = \begin{cases} p(1-p)^{1-x}, x = 0,1\\ 0, otherwise \end{cases}$$

Find the Uniformly Most Powerful size test for H_0 : $p = p_0$ against H_1 : $p = p_1$ where $p_1 > p_0$ (10 marks)

b) Let $z_1, z_2, z_3, ..., z_n$ $i.i.dN(\mu, \sigma^2)$ random variables. Find the Likelihood Ratio Test (LRT) for $H_0: \mu = \mu_0$ against $H_0: \mu \neq \mu_0$ and in a case where σ^2 is unspecified. (10 marks)

QUESTION FOUR [20 MARKS]

Let $x_1, x_2, x_3, ..., x_n$ i.i.d $N(\mu, \sigma^2)$

- a) Show that $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})^2$ is asymptotically biased estimator of σ^2 . How would you fix the bias? (5 marks)
- b) Show that the sample mean is a UMVUE for μ (7 marks)
- c) Obtain the asymptotically efficient MLE for unbiased estimator of $\sigma^2(8 \text{ marks})$