CHUKA

UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 123: VECTORS AND MECHANICS

STREAMS: TIME: 2 HOURS

DAY/DATE: TUESDAY 02/02/2021 8.30 AM – 1.30 PM

INSTRUCTIONS:

All questions are compulsory

Take $g = 10m/s^2$

QUESTION ONE (30 MARKS)

(a) Define the following terms:

(i)	Vector quantity	(1 mark)
(ii)	Mechanics	(1 mark)
(iii)	Projectile	(1 mark)
(iv)	Acceleration	(1 mark)
(v)	Velocity	(1 mark)

- (b) Determine the angle between the vectors $\hat{a} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{b} = 5\hat{i} 5\hat{j} + \hat{k}$.(3 marks)
- (c) A projectile is launched at an initial velocity of $330m/s^2$ at an angle of 60° to the horizontal. Determine its range. (5 marks)
- (d) Determine the values of \propto such that the vectors $\hat{a} = \propto -2\hat{j} + \hat{k}$ and $\hat{b} = 2 \propto \hat{i} + \propto \hat{j} 4\hat{k}$ are perpendicular. (4 marks)
- (e) A particle moving in a straight line with constant acceleration travels 10 m in the first second and 15 m in the second second. Find the distance travelled in the third second.

(5 marks)

(f) Determine the volume of the parallelepiped spanned by the vectors $\hat{a} = \hat{\imath} + \hat{k}$, $\hat{b} = \hat{\imath} + \hat{\jmath}$ and $\hat{c} = \hat{\jmath} + \hat{k}$. (4 marks)

(g) Given
$$\overrightarrow{AB} = \hat{a}$$
 and $\overrightarrow{AC} = \hat{b}$, show that the area of the triangle ABC is given by
$$Area = \frac{1}{2} \sqrt{(ab)^2 - (\hat{a}. \hat{b})^2}$$
 (4 marks)

QUESTION TWO (20 MARKS)

A helicopter, initially at rest on the ground, rise vertically with constant acceleration. When it is at a height of 60m, its upward speed is 5 m/s. When it is at a height of 240m, and still rising, an object A is released from the helicopter. Using $g = \frac{10m}{s^2}$, calculate:

(i) The initial velocity of A. (4 Marks

(ii) The time that A takes to reach the ground. (5 Marks

After A is released, the helicopter continues to rise with a different constant acceleration. When it is at a height of 350m and rising with a speed of 15m/s, a second object B is released.

(iii) Show that B takes 10s to reach the ground. (5 Marks)

(iv) Find the time that elapses between the impacts of A and B on the ground. (6 Marks)

QUESTION THREE (20 MARKS)

(a) Distinguish between vector and scalar quantities. (2 marks)

(b) A particle of mass mkg accelerates at a ms^{-2} due to an application of a force F N such that its velocity changes from the initial value V_0 to a final value V after t seconds. Show that $a = \frac{V^2 - V_0^2}{2S}$ where S is the displacement. (10 marks)

(c) A stone is dropped from a tower 125m high. When it has fallen through 20m, a second stone is thrown vertically downwards with a speed $u \, ms^{-1}$ from the top of the tower. If both stones reach the ground at the same time, calculate the velocity with which the second stone hits the ground. (8 marks)
