CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 124: GEOMETRY AND LINEAR ALGEBRA

STREAMS: TIME: 2 HOURS

DAY/DATE: THURSDAY 04/11/2021 2.30 P.M - 4.30 P.M.

INSTRUCTIONS:

• All questions on this question paper are compulsory

QUESTION ONE (30 MARKS)

(a) Determine the centre and the radius of the circle whose equation is

$$x^2 + y^2 - 4x - 2y - 15 = 0.$$

(4 marks)

- (b) Find the equation of a circle whose centre is at the point (2,3) and which passes through the point (2,2) in the form $ax^2 + by^2 + cx + dy + f = 0$ (5 marks)
- (c) A line L_1 passes through (1,2) and has a gradient of 5. Another line L_2 is perpendicular to L_1 and meets it at the point where x = 4. Find the equation of L_2 (5 marks)
- (d) A plane has the equation 2x + 3y + 6z + 28 = 0. Calculate the shortest distance of the point (-1,1,1) from the plane. (3 marks)
- (e) Find the equation of the hyperbola in standard form if its centre is the origin and the points

$$(6,-1)$$
 and $(8,\sqrt{8})$ lie on it.

(4 marks

(f) Solve the quadratic equation
$$x^2 - \frac{2}{5}x + \frac{1}{5} = 0$$

(4 marks)

(g) Find the eccentricity of
$$\frac{y^2}{25} - \frac{x^2}{4} = 1$$

(5 marks)

QUESTION TWO (20 MARKS)

(a). Analyze fully and graph the equation

$$x^2 + 4y^2 + 4x - 8y + 7 = 0 ag{12 marks}$$

(b) If **AB=a** and **AC=b**, show that the area of the triangle ABC is given by

$$Area = \sqrt{(ab)^2 - (a.b)^2}$$
 (4 Marks)

(c) Hence or otherwise find the area of the triangle whose vertices are A(1,-5,3), B(-1,1,6) and C(3,0,1).

QUESTION THREE (20 MARKS)

(a) Use matrix inverse method to solve

$$2x + y - 4z = 3$$

$$x + 2y - z = 7$$

$$z - y + 3x = 4 \tag{11 Marks}$$

(b) Convert $6xy = c^2$ into polar coordinates.

(3 marks)

- (c) Given that $Z_1 = 4i + 3$ and $Z_2 = 7i 2$ find
 - $(i) Z_1 Z_2 (2 marks)$
 - (ii) a and b given $\frac{Z_2}{Z_1} = ax + bi$ (4 marks)

.....