CHUKA

UNIVERSITY

(3 marks)

UNIVERSITY EXAMINATION

RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE IN BACHELOR OF

MATH 422: ORDINARY DIFFERENTIAL EQUATIONS II

STREAMS: TIME: 2 HOURS

DAY/DATE: WEDNESDAY 5/5/2021 8.30 A.M - 10.30 A.M.

INSTRUCTIONS

Answer Question **ONE** and any other **TWO** Questions

Question One (Compulsory) (30marks)

- a. Given the equation. $(1-x^2)\frac{d^2y}{dx^2} \frac{dy}{dx} + y = 0$, determine:
 - i. Ordinary point of the equation
 - ii. Singular point of the equation (3 mark)
 - iii. Regular singular point of the equation (3 marks)
- b. Find the differential equation whose fundamental set of solution is $\{e^{4x}, e^x\}$ (7 marks)
- c. Show that the functions $f_1 = e^x$, $f_2 = e^{-x}$ and $f_3 = e^{3x}$ are
 - i. Linearly independent (6 marks)
 - ii. Write down the general solution of the differential equation for which they are solutions (2 mark)
- d. Prove that the Legendre Polynomial of order three is given by

$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$
 (6 marks)

Question Two (30marks)

a. Find the power series solution of y'' + 2xy = 0 near x = 0 (10 mark)

b. Use the Rodrigues formula for Legendre's polynomial of order n

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
 find:

i.
$$P_2(x)$$
 (4 marks)

ii.
$$P_4(x)$$
 (6 marks)

Question Three(30marks)

a. Find a power series solution of the differential equation

$$\frac{d^2y}{dx^2} + \frac{xdy}{dx} - 2y = 0$$

(12marks)

b. Convert the differential equation. $\frac{2d^3y}{dt^3} + \frac{3d^2y}{dt^2} - \frac{4dy}{dt} + 5y = 0$ into a matrix equation of

the form
$$\overrightarrow{\mathbf{y}}' = A \overrightarrow{\mathbf{y}}$$
 (8 marks)

Question Four (20marks)

a. Show that the functions x, x^2 and x^3 are solutions to a differential equation and write the general solution (8 marks)

b. Use the method of undetermined coefficients to find the general solution of the nonhomogenous differential equation (12 marks)

$$\dot{x}_1 = x_2 + 2$$

$$\dot{x}_2 = -2x_1 + 3x_2 + 1$$

Question Five (20marks)

a. Find the general solution of the system using the matrix method (12 marks)

$$\dot{y} = 2y_1 - 3y_2$$

$$\dot{y} = y_1 - 2 y_2$$

b.	The differential equation has a regular singular point at	x = 0. Find the indicial equation
	and the recurrence formula	(8 marks)

$$x^2 y'' - x y' + (1 - x)y = 0$$

.....