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QUESTION ONE (30 MARKS)

a) Verify whether or not the following are ideals in the given ring

i.  Ris the ring of rational numbers and I is the setoff non negative rational numbers
i. R is Z[x] and I is the set of polynomials in Z[x] whose leading coefficient is even

iii. Ris Z, and Iis the set of elements in Z of the form r + Z, where r is an even number
(6 marks)



b) The addition and part of the multiplication table for the ring R={a,b,c} are given below. Use the
distributive laws to complete the multiplication table below

+ a b c

a a b c

b b c a

c c a b

* a b c

a a a

b a c

C a

(5 marks)
¢) Working in Q[x].find the highest common factor of x” + x> —8x—12 and x° +5x° +8x + 4

and express it as a linear combination of the two functions (5 marks)

d) ) If R is a commutative ring with identity, show that R[x] is also a commutative ring with identity
(5 marks)
e) Let R be the ring of all 2X2 matrices over Z with the usual addition and multiplication of

matrices.
i.  Show that the subset of R consisting of all matrices of the form
a b . . o
T = {O }a,b,c € Z} is a non-commutative subring with unity.
c
1i. Which elements of T ate invertible?
a 0
iii.  Findif I = {O b} a,be Z} is anideal of T (6 marks)
QUESTION TWO (20 MARKS)

a) Consider the set R ={[0],[2],[4],[6],[8],[10].[12],[14],[16]} = Z;.

i.  Construct addition and multiplication tables for R using operations as defined in Z

(2 marks)
ii.  Show that R is a commutative ring with unity. (2 mars)
iii. ~ Show that R a subring of Z (2 marks)
1v. Does R have zero divisors? (1 marks)
v. Is Rafield? If yes illustrate each element with its inverse ( 1 mark)

R
b) Let P be an ideal in R. P is a prime ideal if and only if F is an integral domain. (6 marks)

R
c¢) Let M be an ideal in R. M is a maximal ideal iff ﬁ is a _field. (6 marks)



QUESTION THREE (20 MARKS)

a) LetF be a field, and let f(x) and g(x) be polynomials in F[x] where F is a field
i.  Prove that deg(fg) =deg(f) +deg(g). (4 marks)
Consider the polynomials f(x) = 2x* +3x +3and g(x) = 3x + linthe polynomial ring Z,[x]s.Find:

1. deg(f)
il. deg(g)
iii.  deg(fg)
1v. why is the theorem above not satisfied (4marks)
b) Let X be a non-empty set and R be the setoff all subsets of X. define addition and multiplication in R

as follows
A+B=AUB-ANB
A*B=ANB
Forall A € R define a function f: R —>Z, as f(x)= {_ lfxeA
Ootherwise
i. Showthat A+¢=Aand A+A=¢ (5 marks)
ii.  Show that f is a homomorphism of rings (7marks)

QUESTION FOUR (20 MARKS)

a) Let U be a fixed non-empty set and R be the set of subsets of U with addition and multiplication
defined by A+ B=AuU Band Ax B = A B. Verify whether or not (R,+,x) is a ring.

(6 marks)
b) LetF be a field, and f(x) anon-zero polynomial in F[x]. Prove the following
1. If g(x) € F[x] is an associate of f(x),then deg(g) =deg(f). (4 marks)
ii.  There exists a unique monic polynomial that is an associate of f(x). ( 4 marks)
c) LetIand ] be ideals in the ring Z of integers, Verify whether or not
i. I'UJ is anideal
il. I N J isanideal ( 6 marks)

QUESTION FIVE (20 MARKS)

a) 1. Use the Euclidean Algorithm to find Acf (x” +2x* —x—2,x> —4x+3) in Q[x]. (4 marks)
ii. Hence, or otherwise, find polynomials s,t in Q[x] for which
x— 1= s(x* +2x> —x=2) +1(x* —4x+3) (4 marks)
iii. find lem(x® +2x* —x—=2,x> —x—2) (4 marks)

b) prove that in a ring of integers, every ideal is a principal ideal (8 marks)



