CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (GENERAL), ECON/MATH

MATH 304: COMPLEX ANALYSIS 1

STREAMS: TIME: 2 HOURS

DAY/DATE: THURSDAY 08/07/2021 11.30 A.M – 1.30 P.M

INSTRUCTIONS

Answer Questions ONE (compulsory) and any other TWO Questions

QUESTION ONE (30 MARKS) COMPULSORY

- a. Simplify and write the complex expression in the standard form a+bi. (1,3,3 Marks)
 - i. $\frac{1-i}{2}$
 - ii. $\left(\overline{2-i}\right)^2$
 - iii. $\left(\frac{1}{2} + \frac{i}{7}\right)\left(\frac{3}{2} i\right)$
- b. If $w = f(z) = \frac{1+z}{1-z}$
 - i. Determine the point where f(z) is not analytic (2Marks)
 - ii. Find $\frac{dw}{dz}$ (3Marks)
- c. Evaluate the following Limits
 - i. $\underset{z \to 1-i}{lim} (z^2 5z + 10)$ (3Marks)
 - ii. $\lim_{z \to -2i} \frac{(2z+3)(2-1)}{(z^2-2z+4)}$ (4Marks)
- d. Show that is $f()=-2xy+i(x^2-y^2)$ analytic (5Marks)
- e. Convert the given Complex number into the form indicated

i.
$$\sqrt{3} - i$$
 into polar form (3Marks)

ii.
$$2(Cos120^{\circ} + iSin120^{\circ})$$
 into Cartesian form (3Marks)

QUESTION TWO (20 MARKS)

a. Solve the following for z

i.
$$(2+3i)z = (2-i)z - i$$
 (3Mark)

ii.
$$iz + 2i = 4$$
 (4Mark)

b. i. State the Cauchy Integral formula (2marks)

ii. Using the Cauchy Integral formula evaluate $\oint_C \frac{z^2-4z+4}{z+i}dz$,where C is the circle |z|=2 (5Marks)

c. Compute the Laurent series for the function $f(z) = \frac{z+1}{z^3(z^2+1)}$ on the region A:0<|z|<1 centered at z=0. (6Marks)

QUESTION THREE (20 MARKS)

a. Simplify
$$\frac{14+3i}{2-i}$$
 and give your answer in the form $x+iy$ (4Marks)

b. Find all the residues of
$$f(z) = \frac{1}{z^2 + 2z + 10}$$
 (9Marks)

c. Using DeMoivre's Theorem $(Cos\theta + iSin\theta)^n = Cosn\theta + iSinn\theta$, show that

$$Tan3\theta = \frac{3Tan\theta - Tan^3\theta}{1 - 3Tan^2\theta}$$
 (7Marks)

QUESTION FOUR (20 MARKS)

a. Solve the equation
$$z^2 + 4z + 5 = 0$$
 (3Marks)

b. Evaluate the integral using the residue theorem with
$$|z|=3$$
 (13Marks)

c. Find
$$f(z) = u + iv$$
, given that $f(z)$ is analytic and $u = x^3 - 3x^2y$ (4Marks)

QUESTION FIVE (20 MARKS)

a. State DeMoivre's Theorems on:

ii.
$$n^{th}$$
 roots of complex numbers (2Marks)

b. Using the Theorems stated in 5a above:

i. Expand
$$z = (1+i)^9$$
 (4Marks)

ii. Find the square roots of
$$z = 2 + i2\sqrt{3}$$
 (5Marks)

c. Determine the region of the w-plane into which the region bounded

$$x = 1.y = 1$$
 and $x + y = 1$ by is mapped by the transformation $w = z^2$ (7Marks)
