MATH 321

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS, ACTUARIAL SCIENCE

MATH 321: CALCULUS III

STREAMS: "AS ABOVE"

TIME: 2 HOURS

DAT/DATE. WEDNESDAT 51/5/2021	2.501 WI = 4.501 WI
DAY/DATE: WEDNESDAY 31/3/2021	2.30 PM – 4.30 PM

INSTRUCTIONS:

Answer question <u>ONE</u> and any other <u>TWO</u> questions

QUESTION ONE (30 MARKS)

a) Evaluate $\lim_{n\to\infty} \frac{3n}{5n-4}$	(3 marks)	
b) Evaluate $\int_0^1 \int_{x^2}^x xy(x+y)dydx$	(5 marks)	
c) Verify the mean value theorem (MVT) for $f(x) = x^3 - x^2 - x - 1$	on the interval [0,2]	
	(5 marks)	
d) Evaluate the triple integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$	(5 marks)	
e) Determine whether or not the function $z = x^2y^3 + x^4y + xe^y$ is harmonic		
	(5 marks)	
f) Find the area of the region bounded by $x = \sqrt{y}$	(4 marks)	
g) For an arbitrary function $z=f(x, y)$ define the partial derivatives with respect to x and y		
	(3 marks)	
<u>QUESTION TWO (20 MARKS)</u>		

a) Find and classify the critical points of the function $f(x) = x^4 + y^4 - 4xy + 2$ (8 marks)

b) Consider the integral $\iint_R xy^2 dA$, where R is defined by $0 \le x \le 2$ and $0 \le x \le 1$ Show that $\iint_R xy^2 dx dy = \iint_R xy^2 dy dx$ (6 marks)

c) Find the Maclaurin's series for $f(x) = sin\pi x$ upto x^5 (6 marks)

MATH 321

QUESTION THREE (20 MARKS)

- a) Find the average of f(x, y) = xy on the region $R = \{[0,2]x[0,3]\}$ (4 marks)
- b) Given that $f(x, y) = e^{xy} + y \ln x$, find f_x and f_y and comment (4 marks)
 - i) State the Ratio test and hence
 - ii) Determine whether or not the series $\sum_{n=1}^{\infty} \frac{2^k k! k!}{(2k)!}$ Converge (4 marks)
- c) Find the area between the parabola $y = x^3$ and y = 2x + 3 (4 marks)
- d) Calculate the volume under the surface $z=3+x^2-2y$ over the region D defined by $0 \le x \le 1$ and $-x \le y \le x$ (4 mark)

QUESTION FOUR (20 MARKS)

- a) Using power series of sin x and cos x show that $tanx \approx x + \frac{x^3}{3} + \frac{2x^5}{15}$ (5 marks)
- b) Use double integral to find the area of $R = \{(x, y) \in \mathbb{R}^2 : x \in [-1, 2], y \in [x^2, x + 2]\}$
- (5 marks) c) Find the mass, center of mass and moments of inertia of a plate on the triangle bound by $0 \le x \le 1$ and $0 \le y \le x$ whose density is $\ell(x, y) = y^2$ (10 marks)

QUESTION FIVE (20MRKS)

- a) Evaluate the integral $\iint_R xy(x+y)dxdy$ over the area between the curves $y = x^2$ and y = x (8 marks)
- b) State the basic comparison test for series convergence and then determine the

convergence of $\sum_{k=2}^{\infty} \frac{1}{n^2 + 1}$ (7 marks)

c) Find the relative maximum and minimum vales of $f(x, y) = x^2 + xy + y^2 - 3x$ (5 marks)

.....