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QUESTION ONE: (30 MARKS)

(a) Distinguish the following terms

1.
ii.
iii.
1v.
V.

Vi.

A convergence sequence and a Cauchy sequence
Holders Inequality and Minikowsk's Inequality
A Hamel base and Schauder Basis

A semi-norm and a para-norm

An Iteration and a contraction mapping

A complete space and a compact space

(b) (i) Define a Banach space. Hence give any two examples of Banach spaces

(i1)) When are two norms said to be equivalent on a vector space?

(c) (i) When are two normed linear spaces said to be Isometrically Isomorphic?

(ii) Hence show that the spacesC, "~ ¢; are Isometrically Isomorphic
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(d) Prove that for a weakly convergent sequence, its limit point of is unique

(3 marks)

(e) (i) Define a sesquillinear functional on normed linear spaces X and Y
(2 marks)
(i1) Hence state without proof the Riesz’s Representation Theorem (3 marks)

QUESTION TWO: (20 MARKS)

(a) State the Parallelogram law as used in inner product spaces. Hence using an appropriate
example, illustrate that all Banach spaces are not necessarily inner product spaces.

(6 marks)

(b) Define a fixed point of a mapping T of a set X. Give two cases that illustrate a fixed

point mapping. (3marks)
(c) State and prove the Banach Fixed Point Theorem on a metric spaceX (11marks)

QUESTION THREE: (20 MARKS)

(a) Prove that on the space of all sequences S, the mapping defined by

(i) Py(x) =sup|x,| Vn =1 isasemi-norm (3marks)

. w 1 .

(i) p(x) = |x| = Zk=12_k 1Lx|1;|k| is a paranorm (5marks)
(b) Define a norm on a linear space X. Hence show that the mapping |I.ll: R™ = R defined

by

1
I % o= ((ZF=1 Il x; 1%))? is a normed space. (12marks)

QUESTION FOUR: (20 MARKS)
(a) Let T: X — Y be a linear operator from a normed linear space X into a normed linear
space Y, prove that T is continuous if and only if T is bounded (10 marks)

(b) Prove that strong convergence implies weak convergence, and with an appropriate
counter example show that the converse is not necessarily true (10 marks)
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QUESTION FIVE: (20 MARKS)

(a) Let T: X — Y be a linear operator from a normed linear space X into a normed linear
space Y. Prove that :

(1) T is continuous iff T is bounded. (5 marks)
(i1) T is continuous at the origin implies that T' is uniformly continuous on X
(3 marks)

(b) Show that if (T,,){’be a sequence of bounded linear operators each defined on a Banach
space X into a normed linear space Y such that for each x € X, lim,,_,o, T, (x) = T(x)
exists in Y, then T is a bounded linear operator from X into Y. (8marks)

(c) ) Define a meager subset of a metric space X. Hence state without proof, Baire’s
Category Theorem (4marks)
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