CHUKA UNIVERSITY EXAMINATIONS (2021)

CHEM 313: COORDIATION CHEMISTRY

STREAMS: BSc (CHEM), BSc(IND CHEM), BED (SCI)

TIME: 2 HRS

INSTRUCTIONS

Answer question **One** (Compulsory) and any other **Two** questions

QUESTION ONE [30 MARKS]

- (a) Write the IUPAC names of the following coordination compounds (6 marks)
- (i) $[Fe(CN)_6]^{3-}$
- (ii) $[Cr(H_2O)_3(NH_3)_3]Cl_3$
- (iii) $K_3[Fe(C_2O_4)_3]$

- (iv) $[Co(NH_3)_3(NO_2)_3]$
- (v) $[Pt(NH_3)_4Cl_2][PtCl_4]$
- (vi) $[Co(H_2O)_3(CH_3NH_2)_3]^{3+}$
- (b) Draw the structures of all the isomers of each of the following species and state the type(s) of isomerism exhibited by each species (6 marks)
- (i) $[Co(NH_3)_4Cl_2]^+$
- (ii) $[Co(NH_3)_3Cl_3]$
- (iii) $[Co(NH_3)_5NO_2]^{2+}$
- (iv) $[Cr(NH_3)_5Cl]NO_2$
- (c) Describe bonding in the [Mn(H₂O)₆]³⁺ ion using the valence bond theory (**3 marks**)
- (d) State three limitations of the valence bond theory (3 marks)
- (e) Calculate the spin only magnetic moment of each of the following species (6 marks)
- (i) $[Cr(NH_3)_6]Br_3$
- (ii) [CoCl₄]²⁻
- (iii) [Ni(CN)₄]²⁻
- (iv) $[Fe(CN)_6]^{3-}$
- (f) Discuss, with the aid of relevant diagrams and calculations, the Jahn-Teller effect in [CuCl₆]⁴⁻ complex (6 marks)

QUESTION TWO [20 MARKS]

- (a) Discuss the factors that influence the ligand field splitting parameter, Δ_0 , (6 marks)
- (b) Calculate the ligand field stabilization energy (LFSE) of each of the following complexes (6 marks)
- (i) $[Mn(H_2O)_6]^{2+}$
- (ii) [RuCl₆]²-
- (iii) $[Mn(CN)_6]^{3-}$
- (iv) $[CoI_4]^{2-}$
- (c) Draw a well labelled molecular orbital diagram for the $Fe(H_2O)_6]^{2+}$ and populate it with electrons (6 marks)
- (d) Use a suitable molecular orbital diagram to explain the effect of a π -acceptor ligand on the ligand field splitting parameter, Δ_0 (2 marks)

QUESTION THREE [20 MARKS]

- (a) A compound consists of Pd, Cl and NH₃ in the ratio of 1:4:4.
- (i) When AgNO₃ is added to an aqueous solution of the compound, 2 moles of Cl⁻ per mole of Pd are precipitated as AgCl. Write the formula of the compound (2 marks)
- (ii) Draw all the unique isomers of the compound (2 marks)
- (b) Determine the ground state term symbols of the following complexes (6 marks)
- (i) $[Fe(CN)_6]^{3-}$
- (ii) $[Ni(H_2O)_6]^{2+}$ (iii) $[Cr(NH_3)_6]^{3+}$
- (c) Order the energies of the following d² terms and identify the ground state term (¹D, ³F, ¹G, ³P and ¹S (2 marks)
- (d) Construct a well labelled Orgel diagram for $[V(H_2O)_6]^{3+}$ complex (4 marks)
- (e) The electronic spectrum of an aqueous solution of $[V(H_2O)_6]^{3+}$ exhibits absorption bands at $\lambda_{max} = 17000$, 25000 and 38000 cm⁻¹. Assign the electronic transitions (3 marks)
- (f) Explain why a solution of the $[Mn(H_2O)_6]^{2+}$ complex has very light pink color (1 mark)

QUESTION FOUR [20 MARKS]

- (a) The most intense absorption band in the visible spectrum of [Mn(H₂O)₆]²⁺ is at 24,900 cm⁻ ¹ and has a molar absorptivity of 0.038 Lmol⁻¹cm⁻¹. Calculate the concentration of [Mn(H₂O)₆]²⁺ that is required to give an absorbance of 0.10 in a cell of path length 1.00 cm (2 marks)
- (b) The complex $[VF_6]^{3-}$ has two absorption bands at 14,800 and 23,250 cm⁻¹ and a third band in the ultraviolet. Calculate Δ_0 and B for this complex (8 marks)
- (c) Construct a well labelled molecular orbital for the square planar [Ni(CN)₄]²⁻complex and populate it with electrons (8 marks)
- (d) Explain the following observation: an aqueous solution of KMnO₄ is intense purple (2 marks)