CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 315: CHEMICAL APPLICATIONS

STREAMS: TIME: 2 HOURS

DAY/DATE: FRIDAY 05/11/2021 11.30 A.M – 1.30 P.M

INSTRUCTIONS:

Answer question **One** (Compulsory) and any other **Two** questions

QUESTION ONE [30 MARKS]

(a) Determine the point group of each of the following species

(10 marks)

- (i) CHCl₃
- (ii) CS₂
- (iii) NO_2 (iv) NO_3
- (v) NH_4^+

(b) On the basis of symmetry, which of the following molecules cannot have a dipole moment:

(6

marks)

- (i) 1,1-Dichloroethene (ii) Benzene (iii) 1,3,5-Trichlorobenzene (iv) 1,3-Difluorobenzene

(c) Set up the multiplication table for the C_{3v} point group and confirm that the elements form a mathematical group (8 Marks)

(e) Construct a matrix representation for C_{2v} point group using the s-orbitals of sulphur and the two oxygens of SO₂ (6 marks)

QUESTION TWO [20 MARKS]

(d) Consider the following multiplication table for the C_{4v} point group:

C_{4v}	E	C_4	C_2	C_4^{3}	$\sigma_{\rm v}$	$\sigma_{\rm v}$ '	σ_{d}	$\sigma_{ ext{d}}'$
Е	Е	C_4	C_2	C_4^{3}	$\sigma_{\rm v}$	$\sigma_{\rm v}$ '	$\sigma_{ ext{d}}$	$\sigma_{ ext{d}}'$
C_4	C_4	C_2	C_4^{3}	E	$\sigma_{ m d}$	σ_{d}	$\sigma_{\rm v}$	$\sigma_{ m v}$
C_2	C_2	C_4^{3}	E	C_4	$\sigma_{ m v}$	$\sigma_{\rm v}$	$\sigma_{ m d}$	$\sigma_{ ext{d}}$
C_4^{3}	C_4^3	E	C_4	C_2	σ_{d}	$\sigma_{\tt d}{}'$	$\sigma_{ m v}$ '	$\sigma_{\rm v}$
$\sigma_{\rm v}$	$\sigma_{\rm v}$	σ_{d}	$\sigma_{ m v}$	$\sigma_{ m d}$	E	C_2	C_4	C_4^3
$\sigma_{ m v}$ '	$\sigma_{\rm v}$ '	$\sigma_{ m d}$	$\sigma_{\rm v}$	σ_{d}	C_2	E	C_4^3	C_4
σ_{d}	$\sigma_{\rm d}$	$\sigma_{ m v}$ '	$\sigma_{ m d}$	$\sigma_{\rm v}$	C_4^{3}	C_4	E	C_2
σ_{d}	$\sigma_{\rm d}$ '	$\sigma_{\rm v}$	σ_{d}	$\sigma_{\rm v}$	C_4	C_4^{3}	C_2	E

(i) Construct the multiplication table for each of the non-trivial sub-groups of the C_{4v} point group. (8 marks)

(ii) Determine the classes of the C_{4v} point group

(6 marks)

(b) Consider the structures of the three isomers of IF₃O₂. Determine the symmetry elements and the point group of each isomer (6 marks)

$$F = \bigcup_{i=1}^{N} F_{i} \qquad O = \bigcup_{i=1}^{N} \bigcup_{i=1}^{N} \bigcap_{i=1}^{N} \bigcap_{i=1}^{N} F_{i} \qquad O = \bigcup_{i=1}^{N} \bigcup_{i=1}^{N} \bigcap_{i=1}^{N} \bigcap_{i=1}^{N}$$

QUESTION THREE [20 MARKS]

(a) Determine the fundamental vibrational modes of $BCl_3(D_{3h})$ that are infrared and Raman active (10 marks)

(b) Determine the atomic orbitals that Xe can use to form hybrid orbitals in $XeF_4(\mathbf{D}_{4h})$ (10 marks)

QUESTION FOUR [20 MARKS]

(a) Define each of the following terms:

(6 marks)

CHEM 315

(i) symmetry operation	(ii) symmetry element	(iii) rotational axis	
(iv) plane of symmetry	(v) center of symmetry	(vi) improper rotatio	n axis
(b) Discuss the composition of a	character table	(8	8 marks)
(c) Derive the characters of the ir Orthogonality Theorem	reducible representation of th	1 0 1	ng the Great (6 marks)