CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION

RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN ECONOMICS

MSEC 811: ADVANCED MICROECONOMICS THEORY I

STREAMS:

TIME: 3 HOURS

DAY/DATE: FRIDAY 07/05/2021 8.30				A.M - 11.30 A.M.	
INST	RUCTI	ON:			
٠	Answe	er ALL questions			
Questi	ion One				
a)	Disting	Distinguish between the following terms:			
	i)	Hotelling's Lemma and Shepherd's Lemma	(2 ma	rks)	
	ii)	Unconditional and conditional input demand	(2	marks)	
	iii)	Indirect utility and direct utility	(2	marks)	
	iv)	Production function and output supply function	(2	marks)	
	v)	Homogeneous function and homothetic function	(2	marks)	
b)	Given	$Y = Ax^{\alpha}$ calculate the following; unconditional input	t demand, outp	ut supply	
	and the	e profit function	(8	marks)	
c)	Suppo	se the cost function of a certain firm is given as $C=20$	$w_1^{0.2}w_2^{0.3}Y$ calc	culate the	
	associa	ated production function using the concept of duality	(10 m	arks)	
1)	<u> </u>		1 · 1 1	1	

 d) Consider a simple case of single output & single input. State , derive and clearly prove the Shepherd's lemma (12 marks)

Question Two

Given a utility function

$$U = X_1^{1/2} X_2^{1/2}$$

Required

i)	Calculate the Marshallian demands for this consumer	(6 marks)	
ii)	Derive the indirect utility function for this consumer	(4 marks)	
iii)	Calculate the hicksian demands for this consumer	(6 marks)	
iv)	Derive the expenditure function for this consumer	(4 marks)	
v)	Prove the slutsky's equation	(10 marks)	

Question Three

Question 1	1/	
Suppose the firms' production function is given as following		$x_2^{/2}$ use the two step approach to solve the
i)	Conditional input demand functions	(5 marks)
ii)	The minimum cost	(3 marks)
iii)	Output supply function	(3 marks)
iv)	Unconditional input demand functions	(4 marks)
v)	Maximum profit	(5 marks)

Question Four

Consider a maize farmer who lives near a factory. The famer has two option of working either

- i) On the farm supplying L_1 hours
- ii) At the factory supplying L_2 hours

Assume that the amount of maize produced, y, is given by production function of the form $y = x^a$, that the farmer has at most L hours to work in either farm or factory, that the farmer's utility function for market consumption good, c, and maize consumption, x, is given by u(c,x)=cx, that the price of market goods is defined as P_c , that the price of maize as P_x , and the wage rate for working at the factory is w.

Required

a)	Set up the decision problem for the farmer	(5 marks)
b)	What are the first order conditions and what do they mean?	(5 marks)
c)	What is the equilibrium solution for L_1 , y, c, and x? marks)	(5
d)	Suppose $a=\frac{1}{2}$, what happen if w changes? marks)	(5