CHUKA UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 449: PROBABILITY THEORY

STREAMS: BSc. MATHEMATICS TIME: 2 HOURS

DAY/DATE: MONDAY 29/03/2021 11.30 A.M. – 1.30 P.M.

INSTRUCTIONS:

• Answer question **ONE** and **TWO** other questions

- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION 1[30 MARKS]

- (a) Define the following:
 - i) Convergence in probability [2 Marks]
 - ii) Convergence in distribution [2 Marks]
- (b) Briefly describe Bernoulli's weak law of large numbers. [3 Marks]
- (c) State and proof the Borel Cantelli Lemma. [5 Marks]
- (d) Differentiate between the σ –field and the Borel field [5 Marks]
- (e) Consider a field denoted by \mathcal{A} and let $A_1, A_2, ..., A_3 \in \mathcal{A}$. Show that $\bigcup_{i=1}^n A_i = \bigcap_{i=1}^n A_i \in \mathcal{A}$ [5 Marks]
- (f) Define the indicator function $I_A(x)$ of a set A. [3 Marks]

(g) Given the sets $A=\{2,3,4,5,6\}$ and $B=\{1,2,3,4,5,6,7\}$ obtain, $I_A(1), I_{B^c}(1), I_{AB}^{(1)}, I_{A-B}(3), I_{AUB}(7)$ [5 Marks]

QUESTION 2 [20 MARKS]

- a) Consider a probability measure defined as $(\Omega, \mathcal{F}, \mathbb{P})$.
 - i) Explain each of the elements defined in the above space [3 marks]
 - ii) If $A \in \Omega$, explain all the properties of \mathbb{P} using mathematical expressions. [4 marks]
- b) Explain the term independence as used in probability theory. [3 marks]
- c) Let X_n be i.i.d, $E(X_n) = \mu$ and $Var(X_n) = \sigma^2$. Set $\overline{X} = \frac{1}{2} \sum_{i=1}^n X_i$, show that $\frac{1}{2} \sum_{i=1}^n (X_i \overline{X})^2 \longrightarrow \sigma^2$ [10 marks]

QUESTION 3 [20 MARKS]

- a) (Borel-Cantelli Lemma) Suppose $A_1, A_2, ..., A_n$ is a sequence of events
- i) If $\sum \mathbb{P}(A_n) < \infty$ then, $\mathbb{P}(A_n, o. i) = \mathbb{P}(Lim \, Sup \, A_n) = 0$
- ii) If $\sum \mathbb{P}(A_n) = \infty$ and $A_1, A_2, ..., A_n$ are independent then, $\mathbb{P}(A_n, o. i) = \mathbb{P}(Lim \, Sup \, A_n) = 1$.

 Prove [10 marks]
 - b) Find E(X) when
 - (i) X is the maximum of two dice rolls. [5 marks]
 - (ii) X is the number of tosses of biased coin until head appears [5 marks]

QUESTION 4 [20 MARKS]

- a) If two dice were rolled once and we are interested in the events where the two numbers that show up are equal (B_1) , their sum are odd (B_2) , their sums are 14 (B_3) . Apply the concept of a probability to come up with Ω , \mathcal{F} and \mathbb{P} respectively for this experiment. [6 marks]
- b) Suppose $X_1, X_2, ...$ is a sequence of random variables with $E(X_n) \to \mu$ and $Var(X_n) \to 0$. Show that $X_n \to \mu$. [4 marks]
- c) If A_n is increasing then $P(A_n)$ is increasing and $\lim P(A_n) = P(\bigcup_{n=1}^{\infty} A_n)$. Prove [10 marks]

MATH 449

QUESTION 5 [20 MARKS]

Let $X_1, X_2, ...$ be i.i.d with finite $E(X_i) = \mu$ and finite variance $Var(X_i) = \sigma^2$. Let $S_n = X_1 + X_2 + \cdots + X_n$, then the sequence $\frac{S_n - n\mu}{\sigma}$ converges to the standard normal in the distribution.(Hint: Central Limit Theorem).Prove. [20 marks]

.....