CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF DOCTORATE OF PHILOSOPHY IN APPLIED STATISTICS

MATH 955: STATISTICAL ANALYSIS OF GENETIC DATA

STREAMS: PhD (STATS) TIME: 3 HOURS

DAY/DATE: TUESDAY 06/04/2021 8.30 A.M. – 11.30 A.M

INSTRUCTIONS:

- Answer any **THREE** questions.
- Use of calculators and statistical tables is allowed.
- Do not write anything on the question paper.

QUESTION ONE (20 MARKS)

Simple Sequence Polymorphisms (SNPs) are usually considered binary random variable in genome-wide association studies (GWAs). Suppose SNP (X) is a binary random variable that takes value 0 with probability p and value 1 with probability 1-p. let X_1, \ldots, X_n be independent and identically distributed (iid) samples of X.

- (i) Compute a maximum likelihood estimation (MLE) estimate of p. (5 marks)
- (ii) Is \hat{p} an unbiased estimate of p? Prove the answer. (5 marks)
- (iii)Compute the expected square error of \hat{p} in terms of p. (5 marks)
- (iv) Prove that if you know that p lies in the interval $\left[\frac{1}{4}; \frac{3}{4}\right]$ and you are given only n=3 samples of X, then \hat{p} is an inadmissible estimator of p when minimising the expected square error of estimation. (5 marks)

QUESTION TWO (20 MARKS)

(a) Using a hypothetical locus, derive the equations for estimating additive and dominance genetic variance. (10 marks)

(b) The following data (Table 1) was obtained from a cross of two cultivars of rice.

Table 1: Mean and variance in number of spikelets in a cross of two cultivars rice

Genotype	Number of	individuals	Mean	Variance (σ^2)
	analysed			
P ₁	20		24.5	79
P_2	20		25.9	62
F_1	20		24.3	67
F2	650		25.3	143
$BC_1(F_1 \times P_1)$	20		24.4	133
$BC_2 (F_1 \times P_2)$	20		24.8	81

- (i) Using the equations derived in part (a) above compute the genetic variance and degree of dominance for number of spikelets in rice (Table 1). (6 marks)
- (ii) Calculate heritability for the number of spikelets in rice (Table 1). (4 marks)

QUESTION THREE (20 MARKS)

- (a) Using appropriate statistical model(s), explain composite interval mapping as used in the QTL mapping. (14 marks)
- (b) Design a training populations for selective phenotyping in genomic prediction. (6 marks)

QUESTION FOUR (20 MARKS)

(a) Given the following pedigree (Figure 1), construct a table showing the coefficients of relationship between each individual. (10 marks)

Figure 1: Relationship between different individuals

(c) With an aid of diagram, outline the steps in association mapping. (10 marks)