UNIVERSITY

CHUKA

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE IN <u>MATHEMATICS, BACHELORS OF ARTS (MATHS-ECONS)</u> <u>(MAY-JULY 2021)</u> <u>MATH 206: INTRODUCTION TO REAL ANALYSIS</u>

STREAMS: ````as above```` Y2S2

DAY/DATE: INSTRUCTIONS:

- Answer question **ONE** and **TWO** other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Find if the following sets are bounded or not and if bounded find the *sups* and *infs*

(i) $S_1 = \{x \in \mathbb{R} : 3 \le x < 7\}$	(3 marks)
(ii) $S_2 = \left\{ 1 + (-1)^n \frac{1}{n} : n \in \mathbb{N} : \right\}$	(3 marks)
(iii) $S_2 = \{1 + (-1)^n : n \in \mathbb{N}: \}$	(3 marks)

- (b) Determine the accumulation points of each of the set of real numbers
 - (i) The set of natural numbers N;
 - (ii) (*a*, *b*]
 - (iii) The set of irrational points

(c) Let $A \subseteq \mathbb{R}$ be given by $A = \{x \in \mathbb{R} : 0 < x \le 1\}$. Show that the element $\frac{1}{2} \in A$ is an interior point of *A* whereas 1 is not (4 marks)

- (d) Show that the subset $A \subset \mathbb{R}$ is closed if and only if $A = \overline{A}$ (4 marks)
- (e) Show that the set of squares of whole numbers is countable (3 marks)

TIME: 2HRS

(3 marks)

(1 montra)

(f) Let S be a non-empty subset of R. Prove that the real number A is the supremum of S if and only if both the following conditions are satisfied

(i)
$$x \le A \quad \forall \ x \subset S$$

- (ii) $\forall \epsilon > 0 \quad \exists x' \in S : A \epsilon < x' \le A$ (4 marks)
- (a) State without proof the following properties for real numbers.
 - (i)Completeness axiom(2 marks)(ii)Archimedean Property(1 mark)

QUESTION TWO: (20 MARKS)

(a) Prove that $\sqrt{n+1}$	$-\sqrt{n-1}$	for any integer $n \ge 1$ is an irrational number	(4 marks)
-----------------------------	---------------	---	-----------

- (b) Given that $x, y, z \in \mathbb{R}$. Show that, (i) If $x \neq 0$ and xy = xz then, y = z (4 marks)
 - (ii) If x < y then, $\frac{1}{y} < \frac{1}{x}$ (4 marks)
 - (iii) x < y if and only if $x^2 < y^2$ (4 marks)

(4 marks)

(c) Prove that the set of real numbers \mathbb{R} is uncountable

QUESTION THREE: (20 MARKS)

(a) Using the $\varepsilon - \delta$ definition of limit of a function, prove that

(i) $\lim_{n \to \infty} \left(\frac{(-1)^n}{n+5} \right) = 0$ (4 marks)

(ii)
$$\lim_{x \to 2} (x^3 + x - 10) = 0$$
 (4 marks)

(iii)
$$\lim_{x \to \infty} e^{2x} = \infty$$
 (4 marks)

(iv)
$$\lim_{n \to \infty} \left(\frac{3n-7}{7n+9}\right) = \frac{3}{7}$$
 (4 marks)

(b) Using the first principle show that the derivative of the function $y = x^3 - 5x$ is $3x^2 - 5$ (4 marks)

QUESTION FOUR: (20 MARKS)

- (a) Prove that if the limit of a function exists then that limit is unique (4 marks)
- (b) Determine whether the function $f(x) = x^2$ is contious at the point x=1;

$$f(x) = \begin{cases} x & 0 \le x1\\ \frac{1}{2}x & 1 \le x < 2 \end{cases}$$
 is continuous at x=1 (4 marks)

- (c) Using the function $f(x) = x^{\frac{1}{3}}$ at the point x = 0, show that the property of continuity does not necessarily imply differentiability. (7 marks)
- (d) Define an open subset A of \mathbb{R} . Hence show that A is open iff $A = A^0$ (5 marks)

QUESTION FIVE: (20 MARKS)

- (a) Define a Cauchy sequence (x_n) in R. Hence prove that if a sequence (x_n) is convergent then it is Cauchy (6 marks)
- (b) Let (x_n) be a sequence of real numbers prove that if $x_n \to x$ then, $|x_n| \to |x|$. (4 marks)
- (c) When is a sequence (x_n) said to be bounded?. Hence prove that every convergent sequence is bounded, but the converse of this does not always hold (10 marks)

--END---