

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

MATH 206: INTRODUCTION TO REAL ANALYSIS

STREAMS: "AS ABOVE" Y2S2 TIME: 2 HOURS

DAY/DATE: TUESDAY 02/11/2021 11.30 A.M – 1.30 P.M.

INSTRUCTIONS:

• Answer question **ALL** the questions

- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Prove that a limit of function exists then that limit is unique

(5 marks)

- (b) Define an open subset A of \mathbb{R} . Hence determine whether the set $A = \{x \in \mathbb{R}: 2 \le x < 5\}$ is open or not in \mathbb{R} .
- (c) Given the set $A = \{x \in \mathbb{R}: a \le x < b\}$. Determine if possible, the lower boundary, infimum, upper boundary and supremum of the set. (5 marks)
- (d) Briefly describe the Riemann Integrable function f on the interval [a, b] (5 marks)

QUESTION TWO: (20 MARKS)

- (a) Let a and b be non-negative real numbers. Prove that
 - (i) there exist always a non-negative real number a^{-1} (3 marks)
 - (ii) a < b if and only if $a^2 < b^2$ (4 marks)
- (b) Given that $A \subseteq \mathbb{R}$, define an interior point x of A. Hence show that if A is open if and only if A is equal to its interior set A^0 (5 marks)
- (c) Using the definition of limit of a function, prove that

$$(i) \lim_{n \to \infty} \left(\frac{(-1)^n}{n+5} \right) = 0$$
 (4 marks)

(ii)
$$\lim_{x \to 2} (x^3 + x - 10) = 0$$
 (4 marks)

QUESTION THREE: (20 MARKS)

- (a) Prove that if a function is differentiable at a point x = a then the function is also continuous at the same point. (5 marks)
- (b) Hence show that the function f(x) = 2x is Riemann Integrable on the interval [0,1]

(8 marks)

(a) Find the limit superior and limit inferior of the sequence

$$X_n = \left(1 + \frac{n}{n+1} + \cos\frac{n\pi}{2}\right) \colon n \in \mathbf{N}$$
 (7 marks)
