CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE/ARTS, BACHELORS OF SCIENCE, BACHELORS IN MATHMATICS, BACHELORS OF ARTS(MATHS-ECONS), BACHELORS OF SCIENCE(ECON STATS)

MATH 222: VECTOR ANALYSIS

JAN-MARCH 2021 SESSION

DAY/DATE:	
TIME: 2HRS	
STREAMS: "As above"	

INSTRUCTIONS:

- Answer question **ONE** and **TWO** other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

- (a) Prove that if \vec{a} and \vec{b} are non-collinear vectors and $x_1\vec{a}+y_1\vec{b}=x_2\vec{a}+y_2\vec{b}$, then $x_1=x_2$ and $y_1=y_2$
- (b) The position vector of a particle in space is given by the equation $\vec{s} = 2\cos 2t \,\hat{\imath} + 2\sin 2t \,\hat{\jmath} + 3t\hat{k}$
 - (i) Find the equations of the velocity and acceleration at any time t (2 marks)
 - (ii) Find the initial speed of the particle (2 marks)

- (c) Find the directional derivative of $\emptyset = x^2y + xz$ in the direction of the vectors $2\hat{\imath} 2\hat{\jmath} + \hat{k}$ at (1, -2, 2)
- (d) Show that $\nabla^2 \left(\frac{1}{r}\right) = 0$ (4 marks)
- (e) Find the work done in moving a particle once around a circle C in the x-y plane if the circle has centre at the origin and radius 3 units and the force field is given by

$$\vec{F} = (2x - y + z)\hat{i} + (x + y - z^3)\hat{j} + (x - 6y + z)\hat{k}$$
(4 marks)

- (f) Find an equation for the plane determined by the points P1(2,-1,1), P2(-3,-2,1) and P3(-1,3,2) (4 marks)
- (g) Given that $\emptyset = 45x^2y$, evaluate its volume integral such that the volume space is bounded by planes 4x + 2y + z = 8, x = 0, y = 0, z = 0. (5 marks)

(h) If
$$\vec{A} = (2x^2y - x^4)\hat{\imath} + (e^{xy} - y\sin x)\hat{\jmath} + (x^2\cos y)\hat{k}$$
, find $\frac{\delta^2 A}{\delta x \delta y}$ (2 marks)

QUESTION TWO: (20 MARKS)

- (a) Given that $\vec{A} = 3\hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $\vec{B} = \hat{\imath} 2\hat{\jmath} 4\hat{k}$ are position vectors of points P and Q respectively. Find an equation for the plane passing through Q and perpendicular to the line PQ. (6 marks)
- (b) Given the space curve defined by $\vec{r}(t) = \langle t, 3sint, 3cost \rangle$, Find
 - (i) The tangent vector \vec{T} (3 marks)
 - (ii) The principal normal \vec{N} and curvature κ (3 marks)
 - (iii) The Binormal \vec{B} (3 marks)
- (c) Prove that $div(Curl(\overrightarrow{A})) = 0$ (5 marks)

QUESTION THREE: (20 MARKS)

- (a) Given the vector function $\vec{F} = (y^2 \cos x + z^3) \hat{i} + (2y \sin x 4) \hat{j} + (3xz^2 + 2) \hat{k}$
- (a) Show that \vec{F} is a conservative force field (3 marks)
- (ii) Find the scalar potential (4 marks)
- (iii) Evaluate $\int_C \vec{F} \cdot \vec{dr}$, where c is a straight line from (0,1,-1) to $(\frac{\pi}{2},-1,2)$ (3 marks)
 - (b) State and Verify divergence theorem for $\vec{A} = 4x \hat{i} 2y^2 \hat{j} + z^2 \hat{k}$ taken over the region bounded by the cylinder $x^2 + y^2 = 4$, $0 \le z \le 3$ (10 marks)

QUESTION FOUR: (20 MARKS)

(a) Evaluate the line integral $\int_C y^3 dx - x^3 dy$ where C is the positively oriented circle of radius 2 centered at the origin. (10 marks)

(b) Use Stoke's theorem to evaluate $\iint_S curl \vec{F} d\vec{s}$, where $\vec{F} = z^2 \vec{i} - 3xy \vec{j} + x^3 y^3 \vec{k}$ and S is the part of surface $z = 5 - x^2 - y^2$ above the plane z = 1. Assume that S is oriented upwards.

(10 marks)

QUESTION FIVE: (20 MARKS)

(a) Find the volume of the parallelepiped with adjacent sides

$$\vec{u} = 2\hat{i} + \hat{j} + 3\hat{k}, \ \vec{v} = -\hat{i} + 3\hat{j} + 2\hat{k}, \ \vec{w} = \hat{i} + \hat{j} - 2\hat{k}$$
 (4 marks)

(b) If $\vec{A} = x^2 yz\hat{\mathbf{1}} - 2xz^3\hat{\mathbf{j}} + xz^2\hat{\mathbf{k}}$ and $\vec{B} = 2z\hat{\mathbf{1}} + y\hat{\mathbf{j}} - x^2\hat{\mathbf{k}}$, find $\frac{\partial^2}{\partial_x\partial_y}(\vec{A}\vec{X}\vec{B})$ at (1,0,-2) (5 marks)

(c) Verify the Green's Theorem for $\int_C x^3 dx + 2x(1+xy)dy$, where C is the unit circle.

(11 marks)

------END------