CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 313/303: REAL ANALYSIS II

STREAMS: TIME: 2 HOURS

DAY/DATE: THURSDAY 04/11/2021 8.30 A.M – 10.30 A.M

INSTRUCTIONS:

• Answer question ALL the questions

- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

- (a) (i) When is the sequence x_n of elements of real or complex numbers said to be convergent? (2 marks)
- (ii) Let x_n, y_n and z_n be sequences of real numbers such that $x_n \le z_n \le y_n \quad \forall \ n \ge N(N \text{ is a fixed integer})$. Let x_n, y_n both converge to the same limit, say \boldsymbol{l} . Show that z_n also converges to \boldsymbol{l} as $n \to \infty$
- (b) Take a, b > 0 $(a, b \neq 1)$, prove that $log_a x = \frac{log_b x}{log_b a}$ (3 marks)
- © Define and give an example of a periodic function (2 marks)
- (d) (i) Define an absolutely convergent series (2 marks)
 - (ii) Show that in general absolute convergence implies convergence in (K, d) (3 marks)
- (e) (i) Let $\sum_{k \in \mathbb{N}} x_k$ be a series of real numbers. Prove that if $|x_k| \le y_k \ \forall \ k \in \mathbb{N}$ and $\sum_{k \in \mathbb{N}} y_k$ is convergent, then the sum $\sum_{k \in \mathbb{N}} x_k$ is also convergent (4 marks)

- (ii) Prove that if p = 1, then the series $\sum_{n \in N} \frac{1}{n^p}$ is divergent (5 marks)
- (f) Define the Fourier series of the function f(x) on the interval -l to l (4 marks)

QUESTION TWO: (20 MARKS)

- (a) (i) Write the general expression of an exponential and logarithmic function whose base is α (2marks)
- (ii) By considering a > 1 and 0 < a < 1 for the functions f(x) and g(x) respectively make a comparison of the exponential and logarithmic functions. Hence state any three differences in these graphs. (8marks)
- (b) Find the Fourier series of the function defined by

$$f(x) = 0$$
, $for - \pi < x < 0$, and $f(x) = x$ for $0 < x < \pi$

(10marks)

QUESTION THREE: (20 MARKS)

- (a) (i) Describe the Riemann Integrable function f on the interval [a, b] (4 marks)
- (ii) Show that a Dirichlet function on the interval [a, b] is not Riemann Integrable. (6 marks)
- (b) Show that the function f(x) = x is Riemann Integrable in [0,1] that $\int_0^1 f(x) = \frac{1}{2}$ (10 marks)