CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE/ARTS

MATH 400/401: TOPOLOGY 1

STREAMS: BSC/ARTS TIME: 2 HOURS

DAY/DATE: THURSDAY 12/08/2021 2.30 P.M – 4.30 P.M.

INSTRUCTIONS

Answer ALL the three questions. Do not write on the question paper.

QUESTION ONE: (30 MARKS)

- (a) Distinguish the following terms as used in topology
 - (i) An indiscrete topology and a discrete topology
 - (ii) A dense subset and a nowhere dense subset
 - (iii) The interior of the point p and a neighborhood of the point p
 - (iv) A base and a subbase for the topology τ
 - (v) $a T_1$ and T_2 space

(10 marks)

(b) (i) Prove the general De Morgan's law for the intersection;

$$X \setminus \cap_{A_{\lambda}} = \cup (X \setminus A_{\lambda}) for \lambda \in \Lambda$$

(4 marks)

- (ii) Prove that finite union of closed sets is also closed. (3 marks)
- (c) (i) Define a limit point of a subset A of a topological space X.

(1 mark)

(ii) Let $X = \{a, b, c, d, f\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{c\}, \{a, f\}, \{f\}, \{b, c, f\}, \{a, b, c, f\}\}$. Let $A = \{a, c, d\}$. Show that b is a limit point of A but a is not. (6 marks)

MATH 400/401

- (d) Let $f: x_1 \to x_2$ where $x_1 = x_2 = \{0,1\}$ and are such that (x_1, D) and $(x_2, \$)$ be defined by f(1) = 1 and f(0) = 0. Show that f is not continuous but f^{-1} is continuous. (4 marks)
- (e) Define the term a topological property (p). Give an example for this property. (2 marks)

QUESTION TWO: (20 MARKS)

- (a) Let $p \in X$ and denote N_P the set of all neighborhood of a point p. Prove that the following
 - (i) $\forall pairs N, M \in N_P, N \cap M \in N_P$ (3 marks)
 - (ii) If $N \in N_P$ and for every $M \subset X$ with $N \subset M$ it implies that $M \in N_P$ (3 marks)
- (b) Let (X, τ) be a topological space and $A, B \subset X$. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (3mks)
- (c) Let (X, τ) be a topological space and $A, B \subset X$. Denote A^0 the interior of A.
 - (i) Using an appropriate example, show that $A^0 \cup B^0 \neq (A \cup B)^0$ (3 marks)
 - (ii) Prove that $A^0 \cap B^0 = (A \cap B)^0$ (4 marks)
- (d) Distinguish a regular space and a normal space. (4 marks)

QUESTION THREE: (20 MARKS)

- (a) Consider the following topology on $X = \{a, b, c, d, e\}$ and $\tau = \{\{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}, X, \emptyset\}$. If $A = \{a, b, c\}$. Find
 - (i) The exterior of A (3 marks)
 - (ii) The boundary of A (2 marks)
 - (iii) Hence show that the boundary of A, $\delta A = \overline{A} \cap \overline{X/A}$ (3 marks)
- (b) Let $X = \{a, b, c, d\}$ with $\tau_X = \{\{a, b\}, \{a\}, \{b\}, X, \emptyset\}$ and Let $Y = \{x, y, z, t\}$ with $\tau_Y = \{\{x\}, \{y\}, \{x, y\}, Y, \emptyset\}$.

Define the function f as

MATH 400/401

f
-
-

Show that the function f is a homomorphism.

(5 marks)

(c) Distinguish between a $a T_1$ and T_2 space. Using an appropriate counter example show that a T_2 space $\Rightarrow T_1$ space but a T_1 space $\Rightarrow T_2$.

(7 marks)

.....