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Abstract

In an attempt to detect plant leaf diseases faster, accurately, and more efficiently, researchers
have adopted deep learning methods using models like CNN and CapsNet with some success.
However, there is a need for improvement as the current models are computationally expensive in
terms of time and model complexity. Our work improves the Capsule Neural Network(CapsNet)
model by adding convolutional layers to collect enough data and prune using the Entropy-based
method. Entropy-based pruning reduces the number of characters in the model by getting rid of
useless features and retaining only the useful features for detection. This considerably reduces the
parameter size and reduces model complexities in terms of time and computation. We used F1,
F5, and varying folds to assess accuracy in pruned mode against normal models. We tested our
idea using 9080 images of tomatoes from PlantVillage and on three models, namely; ResNet-50,
VGG-16, and CapsNet. CapsNet was the best among the pruned models with 98.9% followed
by ResNet-50 with 93% and VGG-16 at 89.99%. We observed that pruning might be a Superior
and less computationally expensive method than VGG-16 and ResNet-50. This implies that the
accuracy of such models can be improved through the introduction of pruning.
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1 Introduction

Deep neural networks have advanced rapidly in the field of computer vision over the last few years,
from basic image classification tasks like the ImageNet recognition challenge [1],[2] , and [3] to more
advanced applications like object detection [4], semantic segmentation [5], image captioning [6], and
many others. In an attempt to solve misclassification problems, many researchers have used deep
learning models for disease detection. This has achieved some success. However, researchers are still
modifying the developed models to make them more accurate by reducing complexities. CapsNets by
Sabour et al. [7] have shown great improvement in detection and classification due to their ability
to encode features in vector form and preserve their pose. The work done by Sabour et al. [7]
used two convolutional layers and a routing algorithm and achieved some success. However, only two
convolutional layers are insufficient to collect as many features as possible for better classification.
In an attempt to increase the features for better detection, Toranam et al. [8] increased the number
of convolutional layers but then used Max-pooling to reduce the number of features. Research done
by [8] improved the normal CapsNet architecture and used it to examine 231 covid-19 images. The
improved model was tested on multi-class (COVID-19, and No-findings and Pneumonia) and binary
class (COVID-19, and No-findings). The study added convolutional layers to the CapsNet model to
enable maximum feature collection. The model in [8] achieved some promising results. However, an
increase in convolutional layers leads to increased features and translates to model parameters. This
may lead to complexities in the model. To reduce the parameters in the model, the work done by [8]
used Max pooling to reduce the parameters in thelr model.



Although the results were promising, pooling is not recommended as it leads to significant data
loss, which may affect the model’s accuracy. Pruning can be adopted for CNNs and CapsNets to
resize deep learning models which are used for disease detection and/or classification. In this work,
we present an entropy-based approach for pruning various filters that do not contribute significantly
to the model’s accuracy to accelerate and compress CapsNet models in both training and testing. To
recover discrimination capacity, we fine-tuned the trimmed. We used a learning schedule to seek a
trade-off between training speed and model accuracy because the naive iterative pruning technique
is time-consuming. We test our pruning framework for image classification using CapsNet, ResNet-
50 ResNet-50 [9], and VGG-16 [10]. We used 9080 tomato images from plantVillage dataset spread
across ten tomato classes. The contribution of this work is to avoid Max pooling which leads to loss of
data, increase the number of convolution layers for maximum feature collection, and use entropy-based
pruning to reduce the model complexities in terms of computation and time.

2 Related work

Pruning Pruning, when compared to older approaches based on manually constructed visual charac-
teristics, deep neural networks have attained state-of-the-art performance in various disciplines. Deep
neural networks have a significant computational and storage overhead, which is a barrier for a mobile
device with limited processing resources [10]. The VGG-16 model [11], for example, contains 138.34
million parameters, requires more than 500MB of storage space and requires 15.5 billion float point
operations (FLOPs) to classify a single picture. A model of this complexity can easily exceed the
computational capacity of the tiniest devices, such as cellphones. As a result, network compression
has piqued the interest of both academics and industry. Many researchers have discovered that the
deep model suffers greatly from over-parameterization. Denil et al. [12] demonstrated, for example,
that a network can be efficiently reconstructed using only a subset of its original parameters. It should
be noted that this redundancy appears to be necessary during the model training stage, as the highly
non-convex optimization problem is difficult to solve with the current technique [13], [14]. As a result,
the majority of compression strategies aim to reduce a pre-trained model to a small-scale model. In
most deep learning models, the parameters in each layer generate a dense and huge matrix which
causes processing and storage issues. If this dense matrix with low-rank small-scale matrices can be
approximated, the matrix-vector multiplication may be completed rapidly using an approach such as
the fast Fourier transform (FFT). As a result, both computational complexity and memory footprint
may be drastically reduced. Inspired by this notion, many approaches have been presented for the
approximation of weights. Sindhwani et al. [15] model the original parameter matrix using a linear
combination of various structural matrices. Some mathematical operations can be used to turn these
structured matrices into very low-rank matrices. Matrix factorization is used by Denton et al. [13] to
investigate the linear structure of neural networks. They build the approximation using singular value
decomposition.
Product quantization [16] is a popular approach that decomposes the space into a Cartesian prod-
uct of low-dimensional subspaces and quantizes each subspace separately. Gong et al. [17] evaluated
product quantization approaches and discovered that even with a simple k-means-based method, their
approach could obtain excellent results. Chen et al. [18] proposed Hashed-Nets after introducing the
hashing approach into model compression. All connections shared the same parameter value mapped
to the same hash bucket. The Deep Compression technique [19] employs a similar concept.
Network pruning is a well-known issue in model compression that has been extensively researched
for many years. Pruning was previously used in the early 1900s to limit the number of connections
and prevent over-fitting [20],[21]. Han et al. [19] have suggested a pruning strategy for removing
redundancy from deep models. Small-weight connections that fall below a certain threshold would be
removed, resulting in a minimalist design. However, their solution did not lower the size of the activa-
tion tensor, which dominates the memory footprint when batch size is big. As a result, some academics
concentrate their efforts on filter pruning to minimize the number of channels in the activation tensor.
Ferentinos [22] evaluated five Convolutional Neural Network (CNN) architectures for detecting
plant illnesses using a dataset of 87,848 leaf pictures of 25 plant species, separated into 58 plant-
disease pairings, attaining an overall success rate of 99.53 percent with the VGG design. Images from
both the laboratory and the field were used. When photos from the laboratory were utilized for training
and real-life images for testing, the results were significantly reduced. Kothari et al. [23] used two well-



known CNN models (AlexNet and GoogLeNet) on the PlantVillage [24] dataset for disease diagnosis,
with varied train-test ratios, on colored, grayscale, and segmented pictures, attaining a maximum
accuracy of 99.35 percent. Their goal was to create an easy-to-use mobile-friendly application that
could be delivered to farmers. Similarly, Zhang et al. [25] evaluated AlexNet, GooLeNet, and ResNet
with different hyperparameters (training method, batch size, iterations, and so on) to get the maximum
accuracy of 97.28 percent in diagnosing Tomato leaf diseases. The identification and classification of
nine tomato plant diseases using CNN as a learning algorithm has been successfully implemented with
99.18 percent accuracy [26]. Lu et al. [27]used photos of healthy and sick leaves taken naturally to
obtain an overall accuracy of 95.48 percent with a CNN-based model for identifying 10 illnesses in rice
crop. Fuentes et al. [28] created a deep learning-based detection algorithm for tomato disease and pest
identification. The photographs were acquired in real time using digital cameras that caught features
such as backdrop, sunshine, size, and so on. Since their inception, capsule networks have been used
to classify brain tumors, forecast traffic flow, generate 3D images, classify cervical images, test for
lung cancer, and recognize emotions [29]. However, there is a scarcity of literature on their use to the
diagnosis of plant diseases in agriculture. Xiao et al. [30] used capsule networks to classify peanut leaf
diseases. They have also been used to identify UAV pictures [31] and to classify hyperspectral images
[32].Figure 1 shows tomato images drawn from PlantVillage database affected by different diseases.
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Figure 1: Tomato images from Plant-Village

In an attempt to avoid misclassifications, artificial intelligence through machine learning has come
up with automated methods and algorithms for accurately interrogating x-ray images. In the medical
field deep learning has been successfully used for breast cancer diagnosis [33], [34], lung segmentation



[35], [36], pneumonia [37], [38], [39], [40], [41], [42], and brain injuries among others. Research done
by Hemdan et al. [43] developed a model for diagnosing covid-19 and obtained a percentage accuracy
of 74.29%. The work considered a recall, precision, and fl-scores in their accuracy determination.
Even though the accuracy was not up to a maximum of 100%, it was better than eye assessment
by specialists. Narin et al. [2] developed the ResNet50, InceptionV3, and InceptionResNetv2 deep
learning models to diagnose COVID-19 using chest X-ray images. The binary classification procedure
was used in the study, and the results were verified using five-fold cross-validation. The models’
performance was tested using five distinct criteria, and the ResNet50 model attained an average of
98% accuracy. To diagnose COVID-19 instances, Afshar et al. [44]

used capsule networks. accuracy scores, Specificity, and sensitivity were used to assess the per-
formance of the suggested model, and 98.3 percent accuracy was obtained. Mobiny et al. [45] used
X-ray images to create capsule networks that could diagnose COVID-19 patients. The suggested
technique performed better when the developed model was compared to Inceptionv3, ResNet50, and
DenseNet121. In the recent past, covid-19 diagnosis has been done using radiology images. Apos-
tolopoulos et al.[46], devel- oped a method to diagnose Covid-19 using deep learning methods. The
work used 500 no-findings X-rays, 700 bacterial pneumonia, and 224 covid-19 images, and the re-
searchers used specificity values, sensitivity, and accuracy to gauge the model’s performance. In
general, the model achieved 93.48% COVID-19 vs. No-findings vs. pneumonia, 98.78% for covid-19
vs. No-findings. Wang et al. [47] developed a deep learning algorithm for detecting COVID-19 ill-
ness. The suggested method’s performance was tested using sensitivity and accuracy measures, and
the results were compared to deep learning models VGG19 and ResNet50. At the end of the trial,
the average accuracy was 93.3 percent. Sethy et al.[48] used deep learning to extract features from
COVID-19 X-ray images and SVM to classify these characteristics. Kappa values and fl-scores were
used to assess the effectiveness of this hybrid model, which was built by mixing ResNet50 and SVM
models. The study observed good performance as compared to other models. Zheng et al.[49] de-
veloped a new deep learning model and tested it on 499 CT images. They observed an accuracy of
88.55%, measured using AUC, fl-scores precision, and recall. CT scans were applied in research done
by Ying et al. [50] for identification of COVID-19 disease and to differentiate it from pneumonia.
The developed deep learning model was compared to several models in the literature and found to be
better. The availability of deep learning models has enabled easy access to large datasets. CNN-based
models are the most often used deep learning models in medicine, as they are in many other domains.
CNN de- signs, however, have inherent limits. Max-pooling is one of these constraints. Max-pooling
is a method of resizing the model, and sometimes in the process, the most useful features are lost.
Furthermore, current CNN models are unable to maintain the objects’ pose. To address CNN’s weak-
nesses, Sabour et al. [51] presented a novel neural network dubbed Capsule Networks in 2017. The
researchers observed that the developed model overcame the challenges associated with Convolutional
Neural Network (CNN). Normal CNN’s use Scalar input activation functions like Sigmoid, Tangent,
and ReLU. Capsule networks have been intelligently developed to preserve the pose and attributes of
items in an image and simulate their hierarchical connections [51]. CNN’s are not abler to preserve
pose, and they also lose data through pooling [7]. Capsules can enclose pose and other features in
vector form, allowing vector routings to represent the image parameters [51].

3 Materials and Methods

3.1 Capsule Neural Networks (CapsNets)

If the value of the lower capsule is j, then its corresponding output is ;i the prediction of the higher
level capsule i, is calculated as shown in (1) :

'&jli = WijUj; (1)

w;; represents the weighting matrix, and wu;; is the vector that ¢ uses to predict the jth capsule in
the model. Each capsule is expected to predict the higher capsule. If the prediction agrees to the
output of the higher-level capsules, there will be an increase in the coupling coefficients[7]. Equation
(2) shows the SoftMax function used for the calculation of coupling coefficients|7].

exp(bij)
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The coupling coefficient ¢;; is encompassed by variables in equation (2), the log probabilities b;; which
is set to zero at the beginning of the routing algorithm. To determine if the lower-level capsule i can
be coupled with the higher-level capsule j, the log probabilities are used. Equation (3) shows how the
input vector to higher capsules is calculated .

cij = 1 ); - vj + bj where; b # 0 (3)

Here,the output ofj is v;. The length of the output vector represents the probability of existence of
a vector. Therefore, long vectors are increased to a bear one value while short vectors are reduced to
an almost zero value using equation (4);
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where v; the vector output of capsule j and s; is its total input while b;; is updated during routing
v; and wj|;. The inner product will be large if any two vectors agree|[7].
The agreement a;; updating between log probabilities b;; and the coupling coefficients c;; is eval-
uated as:
aij :’Uj "LALj‘I. (5)

Equations (2) and (5) are used to describe the whole routing procedure for computing high-level
vectors. Vectors are able to enclose pose and the relationship between the entities of an image [7]a
technique that allows capsules to learn various features within an image easily. [; is the loss function
used to provide equity of values between zero and one. Equation (6) is used to calculate the loss
function.

I, = Ty max(0,m™ — [|vg||)? + A(1 — Ti) max (0, ||vg|| — m™)? (6)

if the digit of k is available, T} will be equal to one. Otherwise it will be equal to zero.

3.2 Our Approach
3.2.1 Data

We test our pruning framework for image classification using CapsNet, ResNet-50 [9], and VGG-16
[10]. We used 9080 tomato images from plantVillage database. Our work resized the images to 28 x
28 to create equity of size in all the images.

3.2.2 Pruning

In our work, we use an entropy-based pruning to evaluate the relevance of each filter.We convert
tensors into vectors using global average pooling . We choose global average pooling [52] because it
acts as a regularizer because it summarizes spacial information using average values. Our work has
used (L;,W;, Conv)to represent convolution in layer i. L; e R®*"*% represents an input tensor while
W; € R¥*exk*k g a set filter weights. The main objective is to get rid of useless filters W;. In this work
each filter represents one channel of its activation vector. If a channel of the activation tensor contains
less information, its related filter is less significant, and hence will be eliminated during filter pruning.
We evaluated our filters using the entropy method whereby when entropy values are calculated, they
are arranged in ascending order. A higher entropy number indicates that the corresponding filter has
more information and is thus not pruned. A low entropy value shows that the feature is useless and is
pruned.We used equation (7) to calculate the entropy value:

m
H; = pilogpi (7)
i=1
Where the probability bin 7 is denoted by p;,the entropy channel of j is denoted by H;. a small value
of H; means that the channel is not significant and hence will be removed from the model.We convert
tensors into vectors using global average pooling. We have used blue to illustrate the useful feature
maps and red to show the useless models removed during pruning. After pruning, we did fine tuning
to stabilize the model.



3.2.3 The proposed framework

We present a novel CapsNet developed using four convolutional layers to classify 28 x 28 images. The
reason for increasing the convolution layers is to better classify through many feature maps. After each
convolution, this work introduces pruning to remove useless feature maps. We also use fine-tuning to
stabilize the model for better performance. Figure 2 shows the pictorial representation of the proposed
architecture on pruning.
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Figure 2: Proposed architecture on pruning.

Our approach used 16 kernels of size 5 x 5 with a stride of 1 in the first layer. We then applied
pruning to remove the useless feature maps. We maintained the same pattern for the second and third
layers containing 32 5 x 5 and 64 9 x 9, layers respectively. Our primary Caps layer contains 9 x 9
kernels with a stride of 1 applied to 32 capsules. The Label Caps layer has 16-dimensional (16D)
capsules for two classes while the ReLU activation function is used for all layers. We evaluated our
model performance using 9 fold cross-validation where we divided our data into ratios of 10%:90%,
20%:80%, 30%:70%, 40%:60%, 50%:50%, 60%:40%, 70%:30%, 80%:20%, 90%:10% for testing and
training respectively. Further, we used True Positive (TP), True Negative(TN), False Negative(FN),
and False Positive(FP) to compare the performance.

TP

SR . —
Sen TP+ FN) * 100 (8)
TN
= —— %1
Spe TN+ FP) * 100 9)
TP
Pre = TP+ FP) (10)
Fl= 21P %100 (11)

(2TP + FP + FN)

4 Results and Discussion

Regarding Top-1 accuracies, it was observed that VGG-16 and ResNet-50 displayed higher percentages
when measured without pruning. This may seem better but according to [7] CNNs lose relevant data
due to pooling. Hence the two models would still not be the best bet for accurate classification. Top-1
accuracy for a pruned CapsNet on the other hand was higher than that of the original model.

This shows that a pruned CapsNet would be good for detection and classification because it encodes
spatial information[7] about a feature. Additionally, we eliminated nonsignificant feature maps, hence
reducing computational and time complexities. There was an observed increment between Top-1
and Top-5 accuracy. The pruned CapsNet model was observed to be having the highest accuracy



Table 1: Performance changes of models before and after Pruning.

TOP -1 TOP-5

VGG Original 72.41% 91.32%

Pruned 70.0% 89.99%

ResNet  Original 73.10%  94.45%
Pruned 72.43%  93.33

CapsNet Original 77.1% 95.7%
Pruned 78.52%  98.9%

as compared to both VGG-16 and ResNet-50. This indicates that pruning could go a long way in
improving accuracy in image processing. Table: 1 shows performance changes of models before and
after pruning.

Table: 2 shows classification per fold results without pruning while table: 3 shows classification
per fold results with pruning. Our observation was that after pruning, the Models’ accuracy increased
considerably. On comparing the folds, when the train was at 80% and testing at 20%, the % F1 was
high in both pruned and unpruned models which confirms the 80%:20% rule acknowledged by [53]in
their work. In general the results observed show that pruning can be considered as one of the best
methods that reduce model complexity and increase efficiency without the loss of meaningful data

Table 3: Classification per fold results with

Table 2: Classification per fold results without pruning

pruning. Test:  Sen Spe Pre F1 Ace

Train: Sen Spe Pre F1 ACC ;I:;;i" ) () (%) (%) (%)
(J

Test (%) (%) (%) (%) (%) 10:90  97.19 99.95 99.92 98.49 98.52

est (o) () (o) (o) (o)

10:90  96.69 99.54 99.51 98.08 98.11 20:80 99.94 98.09 98.14 99.06 99.04

20:80 99.44 97.59 97.64 9856 98.54
30:70  99.49 9473 9499 97.19 97.11
40:60 98.49 95.63 95.77 97.11 97.06
50:50 9639 9734 9731 96.85 96.86 50:50  99.44 9739 9736 97.82 97.82
60:40 9834 9834 9834 9834 98.34 60:40 98.39 9839 98.39 98.39 98.39
70:30  99.00 97.09 97.13 98.05 98.04
80:20 97.54 98.49 98.47 98.00 98.01
90:10  93.73 98.49 98.40 96.01 96.11

30:70 99.54 9478 95.04 97.24 97.16

40:60 9854 9568 9582 97.16 97.15

70:30 99.05 97.04 97.08 98.00 97.99

80:20 97.59 98.64 98.62 99.09 99.10

90:10 93.78 98.54 98.45 99.84 99.94




5 Conclusion

We explored entropy pruning in this work and discovered that it improved the accuracy levels from
95.7% to 98.9% and reduced complexities. Our pruned model displayed a higher performance compared
to its original version. Our method can be adopted for any deep learning application because it doesn’t
rely on a particular library. In future we intend to to explore the effect of dynamic pruning in CapsNets.
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