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Abstract: Norm -attainability of elementary operators on Hilbert and Banach spaces have 

been Characterized by many mathematicians. However, there is little information on Norm-

attainability of generalized finite operators on C*-algebra. A pair of bounded linear operators 

𝐴, 𝐵 on a complex Hilbert space 𝐻 is called generalized finite operators if ||𝐴𝑋 −  𝑋𝐵 −

 𝐼 || ≥  1 for each 𝑥𝜖𝐵(𝐻). This paper therefore determines the norm attainability of these 

generalized finite operators on C*-algebra when implemented by norm attainable operators 

𝐴, 𝐵. 
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1. Introduction 

Let 𝐻 be a complex Hilbert space, 𝐵(𝐻) be the collection of bounded linear operators on 𝐻 with 

inner product space and 𝐺𝐹 be the set of norm attainable generalized finite operators, the inner derivation 

is defined by 𝛿𝐴𝜖(𝑋) = ||𝐴𝑋 − 𝑋𝐴||, and the generalized derivation by 𝛿𝐴𝐵(𝑋) = ||𝐴𝑋 − 𝑋𝐵||, while 

the generalized finite operator ||𝐴𝑋 −  𝑋𝐵 −  𝐼 || ≥  1  is said to be norm attainable, if for every pair of 

operators 𝐴, 𝐵𝜖𝐵(𝐻) implementing the generalized finite operators are norm attainable and there exists 
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a scalar q and some unit sequence 𝑍𝑛 such that ||𝑍𝑛||=1, |q|=1 and ||(𝐴 − 𝑞) ∗ 𝑍𝑛|| <
1

𝑛,
,  and ||(𝐵 −

𝑞)𝑍𝑛|| >
1

𝑛
||. 

 

Definition 1.1 Involution on algebra, (Gelfand et al. 1943) 

If 𝐴 is an algebra, a mapping ∗ : 𝐴 →  𝐴, defined by  *x x  is called an involution on algebra  𝐴 if it 

satisfies the following four conditions; ∀ 𝑥, 𝑦𝜖𝐴. 

i) (𝑥 + 𝑦)∗ = 𝑥∗ + 𝑦∗ 

ii) (𝜆𝑥)∗= 𝜆𝑥∗ 

iii) (𝑥𝑦)∗ = 𝑦∗𝑥∗ 

iv) (𝑥∗)* = 𝑥∗∗ = 𝑥 

If 𝐴  is a Banach algebra with an involution and, for every  ∀𝑥𝜖𝐴  
* 2|| || || ||x x x , then 𝐴  is called

*C algebra . 

Example of C*-algebra (Gelfand et al. 1943) 

Let 𝐵(𝐻) be a collection of bounded linear operators on  a complex Hilbert space 𝐻, with inner product 

space, then 𝐵(𝐻) is a C*-algebra. 

 

Definition 1.2 Generalized finite operators (Mecheri 2005) 

Given pairs of operators (𝐴, 𝐵)𝜖 𝐵(𝐻) ×  𝐵(𝐻): ||𝐴𝑋 − 𝑋𝐵 − 𝐼|| ≥ 1 is a generalized finite operator 

 

Definition 1.3 Norm attainable operator (Okelo 2020)   

 An operator 𝐴𝜖𝐵(𝐻) is said to be norm- attainable if for every unit vector 𝑥𝜖𝐻 it then follows ||𝐴𝑥|| =

||𝐴||. 

 

2. Main Results  

Theorem 2.1 (Okelo 2018) 

Let 𝑆, 𝑇𝜖𝐵(𝐻) if both 𝑆 and 𝑇 are norm attainable then the basic elementary operator 𝑀𝑆𝑇 is also 

norm attainable. 

The lemma below gives the result on norm attainability of inner derivative. 

Lemma 2.2 
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Let 𝐻 be a complex Hilbert space, 𝐵(𝐻) be the collection of bounded linear operators on 𝐻 with,  

inner product space and 𝐺𝐹 be the set of norm-attainable generalized finite operators,  if there exists a 

scalar q and some sequence  𝑍𝑛 such that ||𝑍𝑛||=1, |q|=1 and ||(𝐴 − 𝑞) ∗ 𝑍𝑛|| <
1

𝑛,
    𝐴𝑋 →  −𝐴𝑋 then 

the inner derivation 𝛿𝐴𝜖𝐺𝐹 is said to be  norm-attainable. 

 Proof 

We define inner derivative 𝛿𝐴 as 𝛿𝐴(𝑋) = ||𝐴𝑋 − 𝑋𝐴||, from ||(𝐴 − 𝑞) ∗ 𝑍𝑛|| <
1

𝑛,
, when n≥1, then we 

will have, 

             ||𝐴𝑋 − 𝑋𝐴||2  = ||(𝐴 − 𝑞)∗𝑋𝑍𝑛 − 𝑍𝑛||2 - ||𝑋(𝐴 − 𝑞)𝑍𝑛||2 

                                      = ||(𝐴𝑋 − 𝑞𝑋)𝑍𝑛  −  𝑍𝑛||2  −  ||(𝐴𝑋 − 𝑞𝑋) 𝑍𝑛 ||2 

                                      = || (𝐴𝑋 − 𝑞𝑋) 𝑍𝑛||2 + 1 – {||(𝐴𝑋 − 𝑞𝑋)𝑍𝑛||2} 

                                      = ||(𝐴𝑋 − 𝑞𝑋)||2 ||𝑍𝑛||2 + 1 – {||(𝐴𝑋 − 𝑞𝑋||2||𝑍𝑛||2} 

                                        =||𝐴𝑋||2 - ||𝑋||2|𝑞|2 + 1 − {||𝐴𝑋||2 − ||𝑋||
2

|𝑞|2 } 

                                        =||𝐴𝑋 − (−𝐴𝑋) + 𝑞𝑋||2 

                                       = ||𝐴𝑋 + 𝐴𝑋 + 𝑞𝑋||2 

For the positive square roots of the equation, the result is, 

                    ||𝐴𝑋 –  𝑋𝐴|| = ||𝐴𝑋 + 𝐴𝑋 + 𝑞𝑋||  

                                           =||2𝐴𝑋 + 𝑞𝑋|| 

                                           = 2||𝐴𝑋|| + ||𝑞𝑋|| 

                                            = 2||𝐴|| + 1 

Implying that ||𝐴𝑋 − 𝑋𝐴|| = 2||𝐴|| + 1 = 𝛿𝐴. 

Since operator 𝐴 is norm attainable, it then follows that the inner derivative 𝛿𝐴 is norm attainable. 

Next we give the conditions for norm attainability of generalized derivative 𝛿𝐴𝐵.  

Lemma 2.3 

Let 𝐻 be a complex Hilbert space, 𝐵(𝐻) be the collection of bounded linear operators on 𝐻, with 

inner product space and 𝐺𝐹 be the set of norm-attainable generalized finite operators, the generalized 

derivative 𝛿𝐴𝐵𝜖𝐺𝐹 is norm attainable if there exists some scalar 𝑞 and a unit sequence 𝑍𝑛  such that 

||𝑍𝑛||=1, |𝑞| = 1, ||(𝐴 − 𝑞)* 𝑍𝑛||>
1

𝑛
  and ||(𝐵 − 𝑞) 𝑍𝑛||>

1

𝑛
 

Proof 

We define a generalized derivative 𝛿𝐴𝐵 as 𝛿𝐴𝐵(𝑋)=||𝐴𝑋 − 𝑋𝐵|| for every 𝑥𝜖𝐵(𝐻) 
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It then follows that 

  ||𝐴𝑋 − 𝑋𝐵||2 = ||(𝐴 − 𝑞)𝑋𝑍𝑛  − 𝑍𝑛||2 – {||𝑋(𝐵 − 𝑞) 𝑍𝑛||2} 

    = {||(𝐴𝑋 − 𝑞𝑋)𝑍𝑛||2 − ||𝑍𝑛||2} – {||(𝐵𝑋 − 𝑞𝑋) 𝑍𝑛||2} 

                                                  = ||(𝐴𝑋 − 𝑞𝑋||2 − ||𝑍𝑛||2 −{||(𝐵𝑋 − 𝑞𝑋)||2 

                                                  =||𝐴𝑋 − 𝑞𝑋 − 𝑍𝑛||2 − ||(𝐵𝑋 − 𝑞𝑋)||2 

                                                   = ||𝐴𝑋 − 𝑞𝑋 − 𝑍𝑛 − 𝐵𝑋 + 𝑞𝑋||2                                   (i) 

                                                   = ||𝐴𝑋 − 𝐵𝑋 − 𝑍𝑛 − 𝑞𝑋 + 𝑞𝑋||2 

                                                    = ||𝐴𝑋 − 𝐵𝑋 − 𝑍𝑛||2 

For the positive square roots of the equation, the result is, 

                             ||𝐴𝑋 − 𝑋𝐵|| = ||𝐴𝑋 − 𝑋𝐵 − 𝑍𝑛|| 

                                                   = ||𝐴𝑋|| − ||𝐵𝑋|| + 1 

                                                    = ||𝐴|| − ||𝐵|| + 1 

Implying that    ||𝐴𝑋 − 𝑋𝐵||  =  ||𝐴||  −  ||𝐵||  +  1                                                    (ii) 

From equation (i) we get the inequality  

    ||𝐴𝑋 − 𝑋𝐵||2 ≥ ||𝐴𝑋 − 𝑞𝑋−𝑍𝑛 − 𝐵𝑋 + 𝑞𝑋||2 

Implying that,      

                         ||𝐴𝑋 − 𝑋𝐵||  ≥  ||𝐴𝑋 − 𝐵𝑋 − 𝑞𝑋||          

                                                 ≥ ||𝐴|| − ||𝐵|| + 1                                                       (iii) 

 

For the reverse inequality, from equation (i), we have                                          

  ||𝐴𝑋 − 𝑋𝐵||2 ≤ ||𝐴𝑋 + 𝑞𝑋 + 𝑍𝑛 − 𝐵𝑋 − 𝑞𝑋||2 

    ≤ ||𝐴𝑋 − 𝐵𝑋 + 𝑍𝑛 + 𝑞𝑋 − 𝑞𝑋||2 

    ≤ ||𝐴𝑋 − 𝐵𝑋 + 𝑍𝑛||2 

For the positive square root of the equation, the result is, 

               ||𝐴𝑋 − 𝑋𝐵|| ≤  ||𝐴𝑋|| − ||𝐵𝑋|| + ||𝑍𝑛||          

                                                            ≤ ||𝐴|| − ||𝐵|| + 1                                                         (iv) 

From equation (iii) and (iv) we get  

  ||𝐴𝑋 − 𝑋𝐵|| =  ||𝐴||  −  ||𝐵||  +  1     

Hence ||𝐴𝑋 − 𝑋𝐵|| =  ||𝐴||  − ||𝐵||  +  1= 𝛿𝐴𝐵 . Therefore  𝛿𝐴𝐵  is norm attainable since 𝐴 and 𝐵 are 

norm attainable. 
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The next theorem gives the main results of our study on norm attainability of generalized finite operators. 

Theorem 2.4 

Let 𝐻 be a complex Hilbert space, 𝐵(𝐻) be the collection of bounded linear operators on 𝐻 with 

inner product space and 𝐴, 𝐵𝜖𝐺𝐹, if 𝐴 and 𝐵 are norm attainable, then the generalized finite operators 

(𝐴𝐵)𝜖𝐵(𝐻) ×  𝐵(𝐻): ||𝐴𝑋 − 𝑋𝐵 − 𝐼|| ≥ 1 is norm attainable. 

Proof 

For the operators 𝐴, 𝐵𝜖𝐵(𝐻), it is known from lemma 2.3 that ||𝐴𝑋 − 𝑋𝐵|| = ||𝐴||  −  ||𝐵||  +  1 

We let ||𝑍𝑛||=1,|𝑞| = 1, ||(𝐴 − 𝑞)* 𝑍𝑛||>
1

𝑛
  and ||(𝐵 − 𝑞) 𝑍𝑛||>

1

𝑛
 

Now for every n≥ 1, then we will have 

 ||𝐴𝑋 –  𝑋𝐵 –  𝐼 || ≥  𝑆𝑢𝑝 {||(𝐴𝑋 –  𝑋𝐵 –  𝐼)𝑍𝑛||} 

               ≥  𝑆𝑢𝑝 {||(𝐴 − 𝑞)𝑋𝑍𝑛  −  𝑍𝑛||  −  ||𝑋(𝐵 − 𝑞) 𝑍𝑛||  +  1} 

                   ≥  𝑆𝑢𝑝 {||𝐴||  −  ||𝐵||  +  1} 

Implying that ||𝐴𝑋 –  𝑋𝐵 –  𝐼|| ≥  ||𝐴||  −  ||𝐵||  +  1                                                   (i) 

For the reverse inequality, 

                       ||𝐴𝑋 –  𝑋𝐵 –  𝐼 ||   ≤  𝑆𝑢𝑝 {||(𝐴 − 𝑞)𝑋𝑍𝑛  −  𝑍𝑛||  − ||𝑋(𝐵 − 𝑞) 𝑍𝑛||  +  1} 

                    ≤  𝑆𝑢𝑝 {||𝐴𝑋||  +  |𝑞|||𝑋||  −  [||𝐵𝑋||  +  |𝑞|||𝑋||]  +  1} 

         ≤  𝑆𝑢𝑝 {||𝐴||  −  ||𝐵||  + 1 − 1 + 1 

   ≤  𝑆𝑢𝑝 {||𝐴||  −  ||𝐵||  +  1} 

Implying that, ||𝐴𝑋 –  𝑋𝐵 –  𝐼|| ≤  ||𝐴||  −  ||𝐵||  +  1                                                 (ii) 

From equation (i) and (ii) we get  

                          ||𝐴𝑋 –  𝑋𝐵 –  𝐼|| =  ||𝐴||  − ||𝐵||  +  1           

Therefore the generalized finite operator 𝐴, 𝐵𝜖𝐵(𝐻): ||𝐴𝑋 –  𝑋𝐵 –  𝐼|| ≥ 1 is norm attainable.                            

3. Conclusion 

The generalized finite operators (𝐴𝐵)𝜖𝐵(𝐻)  ×  𝐵(𝐻): ||𝐴𝑋 − 𝑋𝐵 − 𝐼|| ≥ 1 is norm attainable 

when implemented by norm attainable operators 𝐴, 𝐵.          
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