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ABSTRACT 

The critical concern of financial market investors is uncertainty of the returns. The 

symmetric-GARCH type models can capture volatility and leptokurtosis. However, 

they do not capture leverage effects, volatility clustering, and the thick tail nature of 

financial time series. The primary objective of this study was to apply the asymmetric-

GARCH type models to Kenyan exchange and balance of payments of time series data 

to overcome the shortcomings of symmetric-GARCH type models. Secondary 

objectives included fitting asymmetric-GARCH type models to the Kenyan exchange 

rate and Balance of payments data, identifying the best asymmetric-GARCH type 

model(s) that best fit(s) the Kenyan exchange rate and Balance of payments data and 

forecasting the Kenyan exchange rate and Balance of payments data trends using the 

best asymmetric-GARCH type model. The study compared five asymmetric 

Conditional Heteroskedasticity class of models: IGARCH, TGARCH, APARCH, GJR-

GARCH, and EGARCH. Monthly secondary data on the exchange rate from January 

1993 to June 2021 and Balance of payments from August 1998 to June 2021 were 

obtained from the Central Bank of Kenya website. Asymmetric GARCH models were 

fitted to the stationary log-differenced data based on the functions in the RUGARCH 

package in R. The best fit model is determined based on minimum value of Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC). The optimal 

variance equation for the exchange rates data was APARCH (1,1) - ARMA (3,0) model 

with a skewed normal distribution (AIC = -4.6871, BIC = -4.5860) since it accounts for 

leverage and the Taylor effect. The optimal variance equation for the Balance of 

payment data was ARMA (1,1) - IGARCH (1,1) model with a skewed normal 

distribution (AIC = -0.14475, BIC = -0.07882) due to absence of (persistent) volatility 

clustering in the series. Volatility clustering was present in exchange rate data. Both 

series did not show evidence of leverage effect. Estimated Kenya’s exchange rate 

volatility narrows over time, indicating sustained exchange rate stability. While the 

balance of payment volatility has narrowed over time, the balance of payment deficit 

keeps widening. Thus, the government should take measures to ensure that it maintains 

it competitiveness in the global market to attract foreign direct investment and promote 

exports of goods and services. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Financial investors are always concerned about the uncertainty of the returns which can 

be driven by the price changes, market risks, and business performance instability 

(Alexander, 1999). Volatility has been used to proxy uncertainty. Volatility refers to 

the degree of fluctuations of a given phenomenon over time (Coondoo & Mukherjee, 

2004). In financial markets, volatility is commonly defined as “the (instantaneous) 

standard deviation of the random Wiener-driven component in a continuous-time 

diffusion model” (Andersen, et al., 2006). For instance, if asset returns have large 

swings, it has higher volatility. In turn, common volatility models relate to the "the 

conditional variance" of the underlying series (Tsay, 2010. Volatility is essential 

portfolio optimization, risk management, and asset pricing. As such, modelling and 

forecasting volatility of a financial time series is essential. 

 

Measuring and quantifying risks in financial markets is usually a great challenge due to 

systematic risks (natural disasters, wars, inflation and interest rates fluctuations) that 

affect the entire market. Most financial time series possess volatility and have unique 

features referred to as stylized financial time series facts, which include the absence of 

autocorrelations, heavy tails, asymmetry in time scales, volatility clustering, and 

leverage effect (Sewell, 2011). Linear time series models do not adequately describe 

time series data that exhibit volatility since they assume the existence of linear 

dependence in given series (Akpan et al., 2016). Furthermore, the linear models are 

built on the homoscedastic assumption which may not necessarily hold in real time-

series data due to existence of trend or cyclical components. Time series data like 

exchange rate usually exhibit volatility clustering resulting in the violation of the 

homoscedastic assumption of the equality of variance over time (Cont, 2007). 

Therefore, non-linear models, for example, symmetric and asymmetric-GARCH type 

models, that capture market volatility, have been proposed as suitable models. 

 

Symmetric properties of financial time series modelling were introduced by Engle and 

Nelson (1990). He developed the ARCH(p) which model the effect of conditional 

heteroskedasticity and serial correlation effect and the GARCH (p, q) model where the 
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restricted variance is stated as a function of constant volatility and variance terms. The 

symmetric-GARCH models capture leptokurtosis and volatility clustering properties. 

The symmetric-GARCH type model fails to model the leverage effect property, a 

situation when an unanticipated reduction in prices increases anticipated volatility more 

than an unanticipated growth in the price of similar magnitude (Zakoian & Francq, 

2010). Besides, symmetric GARCH type models do not always fully embrace the thick 

tails property of high-frequency economic time series. To overcome these problems, 

the Student's t-distribution as used by Bollerslev (1987), Baillie and Bollerslev (1989), 

Beine et al. (2002), and Fernandez and Steel (1998) has been used as a substitute to the 

normal distribution to fit the volatility since it has zero skewness and excess kurtosis. 

 

Studies criticize the symmetric GARCH model since the magnitude of change only 

influences the restricted variance. That is, both past negative and positive fluctuations 

have the same impact on the current volatility.  Since the conditional variance must be 

nonnegative, the parameters are often constrained to be nonnegative (Cryer & Chan, 

2008). Thus, symmetric GARCH models do not capture the asymmetry effect in 

financial time series returns data. Asymmetry infers that the unanticipated bad news 

increases the restricted volatility more than the unanticipated good news of similar 

magnitude (Olweny & Omondi, 2011). Conversely, asymmetric-GARCH type models 

have the restricted variance only depending on the magnitude or size and not the sign 

of the shock (Engle & Bollerslev, 1986). 

 

To address the shortcoming of symmetric GARCH models, asymmetric GARCH type 

models, including the Exponential GARCH (EGARCH) model by Nelson (1991), 

Glosten, Jagannathan, & Runkle GARCH (GJR-GARCH) model by Glosten et al. 

(1993) and the Asymmetric Power ARCH (APARCH) model by Ding et al. (1993), the 

Threshold GARCH (TGARCH), and the  Integrated GARCH (IGARCH) model by 

Engle and Bollerslev (1986) are more suitable models because they capture the time-

varying variance of such time series (Moffat et al., 2017).  These models have unique 

innovations that capture the asymmetric effect in financial time series. For instance, the 

EGARCH model uses the natural logarithm to model the restricted variance unlike the 

GARCH model, which models the variance directly. Thus, the parameter boundaries 

are not required to guarantee a positive restricted variance. The asymmetric-GARCH 
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type models tolerate asymmetric effects of positive and negative innovation (Hafner & 

Linton, 2017). 

 

Most empirical studies have demonstrated that asymmetric GARCH type models are 

more robust compared to the symmetric GARCH type models. The stock market has 

been a common area where the volatility models have been useful. For instance, Liu & 

Brorsen (1995) used an asymmetric model to capture the skewness effect of 

deutschmark returns. Petrică & Stancu (2017) empirically examined how symmetric 

(ARCH and GARCH) and the asymmetric-GARCH type models (EGARCH, 

TGARCH, and PARCH) could capture the volatility of daily returns of EUR/RON 

exchange rates. They found out that all the asymmetric models were better than the 

standard ARCH in minimising the volatility prediction errors. The best model for the 

series was EGARCH (2,1), assuming the student’s t distribution.  

 

The asymmetric and symmetric GARCH models have also been used to examine the 

volatility of the inflation rates. Nortey et al. (2014) compared the standard ARCH, 

GARCH, and EGARCH model using Ghana’s monthly inflation from 2000 January to 

2013 December. The results illustrated that asymmetric models (EGARCH) 

outperformed the standard ARCH and GARCH models. The EGARCH (1, 2) model 

with the mean equation of 𝐴𝑅𝐼𝑀𝐴 (3, 1, 2)  ×  (0, 0, 0)12 being the best fit model for 

the data outperforming other competing ARCH, GARCH, and EGARCH models. 

 

Hasbalrasol, Kandora, & Hamdi (2017) examined volatility models' accuracy and 

predictive performance for the monthly Sudanese exchange rate (SDG/USD) return 

data from 1999 January to 2013 December. They compared the standard GARCH, 

Asymmetric GARCH, and ARMA models assuming the non-normal and normal 

Student distributions. The findings revealed that the asymmetric GARCH type models 

provided a better fit for the Sudanese exchange rate assuming the non-normal 

distribution and improved the restricted variance forecasts than the GARCH model. 

The Ding, Granger and Engle (DEG)-GARCH model assuming the student t- 

distribution {AIC = -7.844, Bayesian Information Criterion (BIC) = -7.665} was the 

best fit for the series. The model produced reliable forecasts and adequately estimated 
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the Sudanese pound exchange rate volatility. Besides, the leverage effect in the series 

was a common stylised fact in most financial series. 

 

In Kenyan, Fwaga, Orwa, & Athiany (2017) compared competing orders of the standard 

GARCH models 𝐸𝐺𝐴𝑅𝐶𝐻 (1, 1) using Kenyan monthly inflation rate data from 1990 

January to 2015 December. The study findings revealed that the EGARCH (1,1) model 

was best model fit for forecasting inflation outperforming 𝐺𝐴𝑅𝐶𝐻 (1,1),  

𝐺𝐴𝑅𝐶𝐻 (1,2), 𝐺𝐴𝑅𝐶𝐻 (2, 1), and 𝐺𝐴𝑅𝐶𝐻 (2,2).  Wagala et al. (2012) examined the 

most efficient model from the symmetric {ARCH(q) and GARCH (p, q)} and the 

asymmetric GARCH {IGARCH (p, q), EGARCH (p, q), and TGARCH (p, q)} models 

fitted the Nairobi Securities Exchange weekly returns series. Based on the minimisation 

of Shwartz Bayesian Criteria (SBC), Akaike Information Criteria (AIC) and the Mean 

Squared Error (MSE), the study findings revealed that the IGARCH model, assuming 

student’s t-distribution was the best model for modelling and forecasting volatility of 

the Nairobi’s Stock market series. Overall, the few reviewed studies have a common 

agreement that asymmetric are better than symmetric-GARCH models. Thus, the 

current study applied asymmetric-GARCH models to exchange rate and Balance of 

Payments (BoP) data.  

 

An exchange rate is the value of a country's currency versus the currency of another 

country or economic zone so-called common currency area (Mishkin & Eakins, 2009). 

Countries are now operating on a floating exchange rate regime, where exchange rate 

changes are driven by market supply and demand. Before 1972, most countries globally 

were on a fixed exchange rate regime where currencies had a fixed rate relative to the 

United States of America (US) dollar (Aristotelous, 2002). For instance, Kenya 

maintained a fixed exchange rate regime whose adjustment was based on key factors 

such as export earnings, import payments, tourist incentives, and external public debt 

from 1966 to early 1971 (Mwamadzingo, 1988).  The external value of the Kenya 

shilling was valued in various standards at different points in time. Since then, Kenya's 

external value of the Kenya shilling has been fluctuating as determined by the supply 

and demand forces in international trading activities such as importation and purchase 

of government bills, particularly from developed countries. 
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Exchange rate fluctuations affect a given economy's economic performance by 

impacting gross domestic product growth and inflation (Onyancha, 2012). Schnabol 

(2007) examined the influence of exchange rate volatility on economic growth on forty-

one small open economies in the European Monetary Unity (EMU) region from 1994 

to 2005. The author established that exchange rate volatility negatively influences 

economic growth and recommended that macroeconomic stability is essential to 

maintain positive economic growth. An exchange rate fluctuation can also lead to 

inflation. Exchange rate appreciation makes exporters lose their competitiveness in the 

international market, hence reducing their sales. In turn, it worsens the balance of 

payments of their home country. As such, changes in the exchange rate have a 

significant impact on a country's balance of payments (BoP) (Ndung'u, 2016).  

Therefore, the monetary authorities attach much importance to properly managing a 

country's foreign exchange. 

 

The BoP is a summary statement of a country’s transactions with the rest of the 

countries globally via trade and finance. BoP is divided into two components: the 

current account and capital account. The current account records all trade of goods and 

services, factor income receipts and payments, and net current transfers whereas the 

capital account records purchase and sales of financial assets (Wanjau, 2014). Notably. 

inflows in the capital account finance the current account; such that the BoP is balanced. 

An external balance is reached when both accounts offset each other with no surplus or 

deficit in the BoP (Calvo, 2000). 

 

Asymmetric GARCH models have also been established to capture BoP volatility well 

due to evident of non-linear dependence in the series. Tang (2009) applied an AR(p) 

model to the balancing item series (net errors and omissions) of the BoP of 20 industrial 

countries, including the United States, Germany, and the United Kingdom, to remove 

any linear structure. The non-linearity tests indicated the existence of non-linear 

dependencies for 16 of the 20 countries. Therefore, the authors recommended that the 

non-linear dynamics of these balancing items of the BoP ought to be incorporated when 

modelling and forecasting.  
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Tang & Hooy (2007) established that the volatility of the Australian BoP is better fitted 

in an Asymmetric-Component GARCH model with a resultant long memory in 

absorbing shocks. Hakim & Sriyana (2020 estimated the Exponential Generalized 

Autoregressive Conditional Heteroskedasticity (EGARCH) model for Indonesia’s 

annual Current Account Balance of Payments (CAB) data from 1985 to 2018 and 

established evidence of volatility in the CAB.  The resulting conditional value at risk 

(VaR) or standard deviation indicated that the Indonesian CAB is stable. Therefore, the 

current study also sought to establish the best fit Asymmetric GARCH model for 

Kenya’s BoP data and, as a result, establish its volatility over time. 

1.2 Statement of the Problem 

An exchange rate fluctuation affects the economic performance of a given economy as 

it impacts output growth and price inflation. Therefore, exporters will lose 

competitiveness in the global marketplace when the exchange rate grows. The 

transactions and earnings of exporters will diminish, worsening the balance of 

payments. The symmetric-GARCH type of models has been used to model exchange 

rate and balance of payment. The symmetric ARCH and GARCH models capture 

leptokurtosis and volatility clustering effects. However, some studies criticise the 

symmetric-GARCH model since the restricted variance only depends on the magnitude 

of change. They assume a symmetric distribution hence fail to capture the leverage 

effect property in financial time series which states that an unanticipated price reduction 

increases anticipated volatility more than an unanticipated increase in a price of similar 

size or magnitude. Also, when using symmetric-GARCH type models, they do not fully 

embrace the thick tails property of high occurrence financial time series.  Many 

asymmetric GARCH type models, such as the EGARCH, GJR-GARCH model, 

TGARCH, IGARCH, and APARCH models have been suggested to address the 

shortcomings of symmetric models. Therefore, the study examined the most efficient 

asymmetric-GARCH type models to Kenya’s exchange rate and balance of payment to 

overcome shortcomings of symmetric-GARCH type models. 
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1.3 Objectives of the Study 

1.3.1 General Objectives 

This study applies the asymmetric-GARCH type models to the Kenyan exchange rate 

and balance of payments. 

 

1.3.2 Specific Objectives 

The following specific objectives guided the study: 

i. To fit asymmetric-GARCH type models (EGARCH, IGARCH, APARCH, 

GJR-GARCH, and TGARCH) to the Kenyan exchange rate and BoP data. 

ii. To identify the best asymmetric-GARCH type model(s) that best fit(s) the 

Kenyan exchange rate and BoP data. 

iii. To forecast the Kenyan exchange rate and BoP data trends using the best 

asymmetric-GARCH type model. 

 

1.4 Research Questions 

i. How do asymmetric-GARCH type models (EGARCH, IGARCH, APARCH, 

GJR-GARCH, and TGARCH) fit the Kenyan exchange rate and BoP data? 

ii. Which of the asymmetric-GARCH type models is best for forecasting Kenyan 

exchange rate and BoP data? 

iii. What are the future trends of Kenyan exchange rate and BoP data forecasted 

using the best asymmetric-GARCH models? 

 

1.5 Significance of the Study 

The study adds to the existing knowledge on the asymmetric-GARCH type models. By 

using exchange rates and BoP data the study demonstrates how the theoretical 

underpinning of the models manifest in series with different time series properties. 

Empirically, the research findings can help government policy makers understand the 

Kenya’s exchange rate and BoP volatility. The findings from the study also help policy 

makers redefine strategies that ensure a stable exchange rate and BoP by examining 

their volatilities. Commercial Banks also need to hedge foreign exchange, which 

increases when a bank holds resources or liabilities in external currencies and 

influences the investment earnings of the bank. Thus, understanding the predictability 

of exchange rates and BoP may enable the government, through the central bank, to 
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mediate in the market in managing the two to a sustainable level when the need arises. 

The recommendation for future research would also help researchers and academicians 

to carry out more studies to extend the understanding of how exchange rate volatility 

influences the stability of payments in Kenya. 

 

1.6 Scope of the Study 

The asymmetric conditional heteroscedastic class of models compared are the 

EGARCH, TGARCH, IGARCH, APARCH, and GJR-GARCH. The models are 

particularly applied to monthly exchange rate data spanning from January 1993 to June 

2021 and the BoP data spanned from August 1998 to June 2021. The period is suitable 

since Kenya is already on a flexible exchange rates regime. The best fit model is 

determined based on parsimony (AIC, BIC, Log-Likelihood criterion) and 

minimisation of prediction production errors (Mean error [ME] and Root Mean 

Absolute error [RMAE]). A 12-month step ahead forecast horizon of volatility of the 

two series made with unconditional 1-sigma confidence bands.  
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1.7 Operational Definition of Terms 

Asymmetric Models: These are models used to capture the asymmetric features of 

volatility. It assumes that shocks of the equal magnitude 

(positive or negative) have a different result on volatility.  

Balance of Payments: is the country’s transactions summary of international trade and 

financial transactions made by its residents. 

Exchange Rate: is the value of a county’s currency in terms of another currency 

as in the current study, US Dollar/Kenya shillings (US/Ksh).  

Leptokurtic: More peaked distribution with fat tails, and a thin midrange than 

a standard normal distribution. 

Leverage Effect: Fluctuations in stock values tend to be negatively correlated with 

fluctuations in volatility; that is, the value of economic assets 

often reacts more noticeably to bad news than good news. 

Mesokurtic: A distribution with a kurtosis of zero or practically less than 3. 

The distribution is moderate in breadth and curves with a 

medium peaked height. 

Symmetric Models: The restricted variance depends on the size and not the sign of the 

causal shock. 

Volatility: refers to the degree of fluctuations of a series over time. 

Volatility Clustering: Is the observation that large (small) fluctuations follow large 

(small) fluctuations in absolute terms. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Exchange Rate and Balance of Payments 

The current section previews the economic perspective of exchange rates and Balance 

of Payments 

 

2.1.1 Exchange Rate 

An exchange rate is the value of one cash in terms of another currency (Mishkin & 

Eakins, 2009). From 1972, most countries worldwide used a fixed exchange rate system 

where the nations had a fixed rate relative to the US dollar. Kenya’s economy was under 

an independent float from 1992 to 1997 and later shifted to a managed float since 1998. 

This is usually determined by the demand for currency in international trade, such as 

importers and government bills. Acceptance of the floating exchange rate system was 

anticipated to benefit Kenya (Ndung'u & Mwega 1999). This is because it allows an 

automatic adjustment of the exchange rate guided by the invisible hand of the demand 

and supply of foreign exchange. Besides, it allows Kenya the freedom to engage in its 

financial policy without regard to the impact of the BoP.  The expansion of world trade 

and investment volatility has made the exchange rate a vital determinant of trade 

profitability and the country’s balance of payments (Kim, 2003). The exchange rate 

stabilization is usually directed towards achieving two major objectives: stabilizing 

inflation and achieving export competitiveness. 

 

The exchange rate volatility concept has been an area of concern since it largely affects 

international trade. Past literature has demonstrated that exchange rate volatility affects 

the level of exports with no consensus on the direction of effect since volatility is 

bidirectional. Munyama & Todani (2005) evaluated exchange rate volatility using the 

moving average standard deviation and GARCH (1, 1) and positively associated with 

export performance. In another study, Kasman & Kasman (2005) established a positive 

impact of exchange rate volatility on trade, in the long run, using Cointegration and 

error correction models. On the contrary, studies such as Esquivel and Felipe (2002) 

and Doganlar (2002) have established a negative association between exchange rate 

volatility and exports. Therefore, the current study proposes asymmetric GARCH 

models as a potential model to capture exchange rate volatility. 



11 

 

2.1.2 Balance of Payment  

BoP is the value that nations use to track global financial transactions at a particular 

period (Heakel, 2008). The BoP summarises a nation’s transactions with its trading and 

financing partners across the globe. The BoP have two parts; namely’ the current 

account (that records the imports and exports of goods and services, receipts and 

payments, and gross current transfers) and the capital account (that records all the 

financial assets transactions). Therefore, the two records are expected to balance, hence 

the name of the BoP. A deficit in the current account is an equivalent surplus in the 

capital account, thus sums up to zero. A state of external equilibrium is attained when 

the current and financial accounts are equal; that is, there is no surplus or deficit in 

either record.  A surplus in the BoP arises when the value of a nation’s exports of goods 

and services, income, and current transfers from other nations surpass its payments for 

imports of goods and services, payments, and remittances abroad. The opposite is true 

when it comes to a deficit in BoP. Factors that influence the BoP include terms of trade, 

domestic money supply, exchange rate, domestic investment, inflation, foreign direct 

investment, external borrowing, and remittances (Fischer, 1993). 

 

Under the flexible exchange rate regime, demand and supply forces for foreign 

exchange were anticipated to increase exports prices, which fosters the country’s export 

sector. Exchange rate stabilization anchors domestic prices more than a managed float 

(Adam, 2012). Conversely, a floating rate ensures efficient adjustment of an economy 

to external shocks, maintaining macroeconomic stability. However, it can boost capital 

flight and discourage foreign investment leading to an unstable macroeconomic 

environment (Aguirre & Calderón, 2005). Exchange rate instability influences the 

international competitiveness of local firms since it affects input and output prices 

(Joseph, 2002) and the global competitiveness of a country due to the potential loss of 

value of money. For instance, exporters lose competitiveness in the international market 

due to reduced profits due to exchange rate appreciation. Conversely, importers’ 

competitiveness increase in the domestic market, leading to excess imports. In any case, 

exchange rate fluctuations worsen the BoPs. Depreciation of currency discourages 

imports, raising import prices relative to domestic prices. Thus, exporters will play a 

competitive advantage against exporters from other nations, increasing their export 

levels (Yau & Nieh, 2006).  Therefore, the current account deficit is a structural 
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problem arising from exchange appreciation which encourages imports while 

diminishing exports. In conclusion, it is vital to understand the volatility of exchange 

rates since it benefits players in international trade and the economy. Thus, the current 

study proposes asymmetric GARCH models as a potential model to capture the spill 

over effect of exchange rate volatility on international trade. 

 

2.2 ARMA Model 

Let 𝑋𝑡 be the observed time series and further let 𝑒𝑡′𝑠 be a sequence of independent 

identically distributed with a mean zero and variance 𝛿𝑒
2 , an autoregressive process of 

order p {AR(p)}, so-called Yule–Walker equations, attributed to the works of Yule 

(1925; 1926) satisfies the equation 2.1 with 𝑒𝑡 being independent of 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑝 

𝑋𝑡 = ∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + ∅3𝑋𝑡−3 + ⋯ + ∅𝑝𝑋𝑡−𝑝 + 𝑒𝑡                                             (2.1 ) 

 

Equation 2.1 denotes 𝑋𝑡 as a linear combination of the p recent observations of itself 

with the residual component, 𝑒𝑡 not accounted for by the past values. Slutsky (1927) & 

Wold (1938) introduced the Moving Average (MA) process expressed in equation 2.2  

𝑋𝑡 = 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − 𝜃3𝑒𝑡−3 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞                                               (2.2) 

 

Unlike in AR(p) process, the series is linearly depended on the present and past values 

of the stochastic term. 

 

Later on, the ARIMA model was developed in the 1970s by George Box and Jenkins; 

hence Box and Jenkins methodology (Box, and Jenkins, 1970). The ARMA (p, q) 

process, has the MA (q) and AR (p) parts. An innovation of the two models is the 

autoregressive moving-average (ARMA) model brought forth by Box, Jenkins, and 

Reinsel (1994). The parametrization of the ARMA process combines the functional 

form of AR and MA models, as an amalgamation of both processes, to reduce the 

number of parameters used. It forms the mean equation since it gives a flexible and 

parsimonious estimation of conditional mean dynamics.  

 

An ARMA (p, q) process is expressed as in equation 2.3. 

𝑋𝑡 − ∅1𝑋𝑡−1 − ⋯ − ∅𝑝𝑋𝑡−𝑝 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞                      (2.3) 

Where 𝑒𝑡~𝑁(0, 𝛿2),  
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Using the backshift operator, we have the model for ARMA being 

(1 − ∅1𝐵 − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝)𝑋𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞)𝑒𝑡 

∅(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑒𝑡                                                                                                              (2.4) 

 

From the above equation when ∅(𝐵) = 1 then ARMA (p, q)≈ MA (q) and also when 

𝜃(𝐵) = 1 then the ARMA (p, q) ≈ AR (p). The optimal order for the ARMA (p, q) 

model can be selected using the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF). The ARMA model, with AR (p) and MA (q) terms, 

depicts the GARCH model's conditional mean of the exchange rate return series. The 

box- Jenkins modeling involved a preliminary analysis and an iterative three-stage 

process which are: 

i. Model-identification. This stage involves selecting the order p and q of the AR 

and MA polynomial. The selection of p and q comes from the ACF and PACF 

functions. 

ii. Model estimation. In this stage, the model's parameter estimation is considered 

by using various model estimation methods. 

iii. Diagnostic-checking. In this stage, the model is examined for its adequacy in 

forecasting. 

iv. Forecasting. 

 

ARMA Estimation  

The ARMA (p, q) process parameters can be estimated using conditional or maximum 

likelihood methods. The Maximum likelihood estimation (MLE) method is common. 

Like other time series models, the post-diagnostic checks in ARIMA modelling include 

testing if the model residues are white noise or have no ARCH effects. The Ljung–Box 

statistics is commonly used to examine the model’s adequacy. A correctly specified 

model, then the Ljung statistic (𝑄(𝑚)) follows a Chi-squared distribution with (𝑚 −

𝑔) degrees of freedom, where g is the number of model parameters. 

 

2.3 Volatility Models 

Financial markets respond to political upheavals, economic crises, wars, or natural 

disasters. Such events lead to higher volatility in the financial series. Financial series 

such as asset returns possess distinct features commonly referred to as stylized facts of 
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financial data. The stylized facts include Serial dependence, Volatility changes over 

time, asymmetry, or heavy-tailed distribution with excess kurtosis. Statistically 

speaking, the conditional variance for given past observations expressed in equation 2.5 

is non-constant over time, and 𝑋𝑡 is conditionally heteroskedastic. 

Var (𝑋𝑡 | 𝑋𝑡−1, 𝑋𝑡−2, … . )                                                                                                      (2.5) 

 

The volatility can also be captured as the square root of the conditional variance 

(equation 2.6) 

𝛿 = √𝑣𝑎𝑟 (𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, … )                                                                                            (2.6) 

 

Since 𝑋𝑡 is conditionally heteroskedastic, the assumption of Gaussian distribution and 

stationarity may not hold with most financial time series. Engle proposed 

autoregressive conditionally heteroskedastic- ARCH since the conditional variance is 

not constant over time and is autoregressive in nature. Bollerslev (1986) introduced the 

GARCH model as an innovation from the ARCH model. The following discusses the 

two forms of GARCH models. 

 

2.3.1 Symmetric-GARCH Models 

The symmetric property assumes that volatility increases more following adverse than 

positive shocks of the same magnitude. The generalized ARCH (GARCH) model 

captures such aspects as a conditional heteroscedastic model proposed by Bollerslev 

(1986) as a helpful extension of the ARCH model. Engle (1982) noted that the 

conditional variance did not depend on conventional econometric models' past. He thus 

proposed a model that captures the perception that current variance depends on its past 

and the non-constant nature of the one-period forecast variance. Besides, the model 

parameter should satisfy the non-negativity constrain and stationary assumptions. 

 

Symmetric-GARCH models assume that positive and negative shocks have the same 

effect on volatility since it relies on squared residuals. In reality, especially in financial 

series such as the price of assets, the bad news is more pronounced than good news. In 

such a case, negative shocks cause higher volatility than positive ones, albeit being of 

the same size. The phenomenon has been termed the leverage effect. Ascribed to 

Brooks (2008), the term “leverage effect” stems from the perception that a stock's 
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volatility tends to increase when returns are negative. To overcome such a shortcoming 

of symmetric models, asymmetric- GARCH models such as EGARCH have been 

developed. 

 

2.3.1.1 ARCH (p) Model 

Consider 𝑋𝑡 is a stationary time series with 𝑋𝑡 = 𝛿𝑡𝜀𝑡 where  𝛿𝑡 ≥ 0 and is generated 

by 𝑋𝑡−𝑘, 𝑘 ≥ 1 and 𝜀𝑡 signifies the randomly distributed and independent variables with 

mean zero and variance of one. 

 

As postulated by Engle (1982), ARCH is a function of past squared returns with 

heteroscedastic and volatility clustering properties. ARCH(q) model can be expressed 

as in equation 2.7 

𝛿𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2                                                                                                          (2.7) 

Where 𝜔 > 0, 𝛼𝑖 ≥ 0, for 𝑖 = 1, … , 𝑞 and ∑ 𝛼𝑖
𝑞
𝑖=1 < 1 

If the term ∑ 𝛼𝑖
𝑞
𝑖=1 < 1, then it is weekly stationary and the unconditional variance is 

defined as in equation 2.8. 

𝐸(𝜀𝑡
2) =

𝜔

1 − 𝛼1 − 𝛼2 − ⋯ − 𝛼𝑞
                                                                                      (2.8) 

 

Nonetheless, the ARCH model has shortcomings. It assumes that positive and negative 

shocks have the same impact on volatility since it relies on the previous squared shocks. 

The ARCH model is also restrictive, and the constraints become complicated for higher 

orders limiting its ability with the Gaussian process to capture excess kurtosis. Besides, 

the ARCH models can over fit the volatility since they are less responsive to large 

shocks (Engle, 1982). Owing to the shortcoming of ARCH models, an advanced model 

was brought forth: the generalized ARCH model. 

 

2.3.1.2 GARCH (p, q) Model 

This model was introduced by Bollerslev (1986). Let (𝑧𝑡) be a sequence of 𝑖. 𝑖. 𝑑. 

random variables, thus 𝑍𝑡∼ N (0, 1). (𝑎𝑡) is the generalized autoregressive conditional 

heteroskedastic or GARCH (q, p) process if 𝑎𝑡 = 𝛿𝑡𝑧𝑡 , ∀ 𝑡 ∈ 𝑍. 𝛿𝑡 is a nonnegative 

process such that; 
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𝛿𝑡
2 = 𝛼0 + ∑ 𝛼𝑖 𝑎𝑡−𝑖

2 + ∑ 𝛽𝑗 𝛿𝑡−𝑗
2𝑝

𝑗=1
𝑞
𝑖=1                                                                          (2.9) 

And     𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑞, 𝛽𝑗 ≥ 𝑜, 𝑗 = 1,2, … , 𝑝 

 

The parameter restrictions guarantee the positivity of the conditional variance. In terms 

of the lag-operator, B, equation 2.9 results to equation 2.10. 

𝛿𝑡
2 = 𝛼0 + 𝛼(𝐵)𝑎𝑡

2 + 𝛽(𝐵)𝛿𝑡
2                                                                               (2.10) 

Where  𝛼(𝐵) = 𝛼1𝐵 + 𝛼2𝐵2 + ⋯ + 𝛼𝑞𝐵𝑞and 𝛽(𝐵) = 𝛽1𝐵 + 𝛽2𝐵2 + ⋯ + 𝛽𝑝𝐵𝑝 and 

𝛼𝑖 + 𝛽𝑖 = 1. 

 

If the roots of the characteristic equation, i.e., 1 -𝛽1𝑎- 𝛽2𝑎2 − ⋯ − 𝛽𝑝𝑎𝑝 = 0 lie outside 

the unit circle and 𝑍𝑡 is stationary, then we have 

𝛿𝑡
2 =

𝛼0

1 − 𝛽(𝐵)
+

𝛼(𝐵)

1 − 𝛽(𝐵)
𝑎𝑡

2                                                                                      (2.11) 

𝛿𝑡
2 = 𝛼0

∗ + ∑ 𝛿𝑖

∞

𝑖=1

𝑎𝑡−𝑖
2                                                                                                      (2.12) 

Where 𝛼0
∗= 

𝛼0

1−𝛽(𝐵)
  and 𝛿𝑖 are coefficients of 𝐵𝑖 in the expansion of 𝛼(𝐵)[1 − 𝛽(𝐵)]−1 

 

Bollerslev (1986) give the following properties of the GARCH model: 

 

Mean 

From equation (2.13), the conditional expectation and variance of 𝑎𝑡 is 

𝐸(𝑎𝑡) = 𝐸(𝛿𝑡𝑧𝑡) = 𝛿𝑡  𝐸(𝑧𝑡 ) = 𝛿𝑡(0) = 0                                                   (2.13) 

Since the expectation of 𝑍𝑡 is 0 and 𝑖𝑖𝑑 with a mean zero. 

 

Second Moments or Variance 

From equation 2.14, the variance of 𝑎𝑡
2 is given by  

𝐸(𝑎𝑡
2)  = [𝛿𝑡

2 𝑧𝑡
2] = 𝐸(𝛿𝑡

2) 𝐸(𝑧𝑡
2) = 𝐸(𝛿𝑡

2)                                                          (2.14) 

Since 𝐸(𝑧𝑡
2) =1 because it is a normal distribution with mean 0 and variance of 1, taking 

expectations on both sides of equation 2.14, we have equation 2.15. 

𝐸(𝛿𝑡
2) = 𝛼0 + ∑ 𝛼𝑖 𝐸(𝑎𝑡−𝑖

2 ) + ∑ 𝛽𝑗  𝐸(𝛿𝑡−𝑗
2 )                                                  (2.15)

𝑝

𝑗=1

𝑞

𝑖=1
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Since 𝐸(𝑎𝑡
2) =𝐸(𝛿𝑡

2) =  𝐸(𝑎𝑡−𝑖
2 ), under normality assumptions, the variance is 

estimated using equation 2.16; 

𝐸(𝑎𝑡
2) = 𝐸(𝛿𝑡

2) = 𝛼0 /[1 − (∑ 𝛼𝑖 + ∑ 𝛽𝑗)]                                                  (2.16) 

𝑝

𝑗=1

𝑞

𝑖=1

 

GARCH (1, 1), The variance is given by the equation below 

𝐸(𝛿𝑡
2) =

𝛼0

1 − 𝛼1 − 𝛽1
                                                                                                 (2.17) 

 

The Kurtosis 

The first fourth moment of the time series is obtained using equation 2.18. 

𝐸(𝑎𝑡
2) = 𝐸{(𝛿𝑡

2)2𝑧𝑡
4} = 𝐸{(𝛿𝑡

2)2} = 𝐸(𝑧𝑡
4) = 3𝐸{(𝛿𝑡

2)2}                                    (2.18) 

Since the fourth moment of a normal distribution is three, i.e.,𝐸(𝑧𝑡
4) = 3 

But  

𝐸{(𝛿𝑡
2)2} = 𝐸 {(𝛼0 + ∑ 𝛼𝑖

𝑞

𝑖=1

𝑎𝑡−𝑖
2 + ∑ 𝛽𝑗𝛿𝑡−𝑗

2

𝑝

𝑗=1

)2} =                                     (2.19) 

By expansion, equation 2.19 results in equation 2.20  

𝐸 ((𝛿𝑡
2)2) = 𝛼0

2 + 2𝛼0 ∑ 𝛼𝑖

𝑞

𝑖=1

𝐸(𝑎𝑡−𝑖
2 ) + 2𝛼0 ∑ 𝛽𝑗

𝑃

𝐽=1

𝐸(𝛿𝑡−𝑗
2 ) + ∑ 𝛼𝑖

2

𝑞

𝑖=1

𝐸(𝑎𝑡−𝑖
4 ) + 

∑ 𝛽𝑗
2𝐸[(𝛿𝑡−𝑗

2 )2] + 2 ∑ ∑ 𝛼𝑖𝛽𝑗𝐸(𝑎𝑡−𝑖
2 𝛿𝑡−𝑗

2

𝑝

𝑗=1

𝑞

𝑖=1

𝑝

𝑗=1

)                                                 (2.20) 

 When we consider the case for 𝑖 = 𝑗 = 1 we get the GARCH (1, 1) model as  

𝐸{(𝛿𝑡
2)2} = 𝛼0

2 + 𝛼1
2𝐸(𝑎𝑡−1

4 ) + 𝛽1
2𝐸[(𝛿𝑡−1

2 )2] + 2𝛼1𝛽1𝐸(𝑎𝑡−1
2 𝛿𝑡−1

2 )

+ 2𝛼0
2𝛼1

2 𝐸(𝑎𝑡−1
2 ) + 2𝛼0 𝛽1𝐸(𝛿𝑡−1

2 ) 

By simplifications and taking the right terms together, we have equation 2.21 

𝐸{(𝛿𝑡
2)2} =  𝛼0

2 + (3𝛼1
2 + 2𝛼1𝛽1 + 𝛽1

2) 𝐸{(𝛿𝑡−1
2 )2} + 2𝛼0(𝛼1 + 𝛽1) 𝐸(𝛿𝑡−1

2 )   (2.21) 

Assuming the process is stationary  

𝐸{(𝛿𝑡
2)2} = 𝐸{(𝛿𝑡−1

2 )2} 

Hence  

𝐸{(𝛿𝑡
2)2} =𝛼0

2 + 2𝛼0(𝛼1 + 𝛽1) 𝐸(𝛿𝑡−1
2 )/(1 − 3𝛼1

2 − 2𝛼1𝛽1 − 𝛽1
2)   

𝐸{(𝛿𝑡
2)2}=𝛼0

2 + 2𝛼0
2(𝛼1 + 𝛽1) (1 − 𝛼1 − 𝛽1)(1 − 3𝛼1

2 − 2𝛼1𝛽1 − 𝛽1
2)−1⁄  

From 𝐸(𝑎𝑡
4) = 3𝐸{(𝛿𝑡

2)2} 
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𝐸{(𝛿𝑡
2)2}  =  3 = 𝛼0

2
[1 + 2(𝛼1 + 𝛽1)]

{ (1 − 𝛼1 − 𝛽1)(1 − 3𝛼1
2 − 2𝛼1𝛽1 − 𝛽1

2)1}       
                  (2.22) 

 

Equation 2.22 is the fourth moment for GARCH (1, 1) model. The Kurtosis is given by 

equation 2.23. 

𝐾 =  
𝐸(𝑎𝑡

4)

 [𝐸(𝑎𝑡
2)]2

                                                                                                                 (2.23) 

 

Substituting for equation 2.23 by using equation 2.12 and equation 2.17, equation 2.24 

is obtained as an estimate of kurtosis. 

𝐾 = 3
1 − (𝛼1 + 𝛽1)2

1 − 3𝛼1
2 − 2𝛼1𝛽1 − 𝛽1

2 > 3                                                                           (2.24) 

which is strictly greater than 3 and  1 − 3𝛼1
2 − 2𝛼1𝛽1 − 𝛽1

2 > 0, for the kurtosis to be 

positive, the restriction should hold. 

 

The same fitting procedure applies to a general GARCH (p, q). The GARCH (1, 1) 

model describes the time evolution of the average squared errors, that is., the magnitude 

of uncertainty. Nevertheless, they fail to capture volatility clustering (Bollerslev. 1986). 

 

2.3.1.3 GARCH - M Model 

In financial markets, high risk is frequently expected to result in high returns. In such a 

case, the GARCH-M model postulated by Engle, Lilien, and Robins (1980), where M 

stands for the mean equation, can be used. The said model extends the traditional 

GARCH conceptual model by allowing the conditional mean in a series to rely on its 

conditional variance. A simple illustration is the GARCH-M (1, 1) model expressed as: 

𝑟𝑡 = 𝜇 + 𝛾𝜎𝑡
2 + 𝑦𝑡    𝑤ℎ𝑒𝑟𝑒     𝑦𝑡 = 𝜎𝑡𝜀𝑡     𝑓𝑜𝑟       𝜀𝑡~ 𝑁(0, 𝛿𝑡

2) or 

𝜎𝑡
2 = 𝜔 + 𝛼1𝑦𝑡−1

2 + 𝛽1𝜎𝑡−1
2                                                                                       (2.25) 

 

Where parameters 𝜇 𝑎𝑛𝑑 𝛾 are constants and 𝛾 is the risk premium. A positive 𝛾 implies 

that a series is positively relates to its volatility. 

 

Engle's (1982) & Bollerslev's (1986) ARCH and GARCH models cannot distinguish 

how positive and negative news affects the variance of a series. The EGARCH model, 

in contrast, has three parameters and allows for an infinite squared roots to affect the 
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present conditional variance. This feature allows the EGARCH model to be somewhat 

more parsimonious than the ARCH (p, q) models. The EGARCH (p, q) models is an 

improvement since it includes an overall feature of conditional heteroscedasticity. 

Some aspects of the GARCH (p, q) models can be enhanced to best reflect the features 

and dynamics of a specific time series, such as leverage effects, volatility clustering, 

leptokurtosis, and mesokurtic, common in financial time series. 

 

2.3.2 Asymmetric-GARCH Models 

Most financial time series data, such as the asset prices, often react more to “bad” news 

than “good’ news (Omari & Mwita, 2017). Such a phenomenon is so-called leverage 

effect, fist noted by Black (1976), and is well captured by asymmetric models. Some of 

the asymmetric models are discussed below. 

 

2.3.2.1 The Exponential GARCH Model 

Although the GARCH model adequately captures the heavy tail properties and 

volatility clustering of financial time series, it is a poor model that cannot capture the 

leverage effect because conditional variance depends on the modulus of lagged 

observations (Abdalla, 2012). Volatility in financial time series behaves differently 

based on the direction of the shock (positive or negative). The asymmetric property is 

known as leverage effects, and explains how a negative shock increases volatility more 

than a positive shock of the same size would. The EGARCH model can be used to 

capture such an asymmetry. It captures the asymmetric innovations of a time-varying 

variance to shocks while restricting the variance to be positive. Nelson (1991) founded 

the EGARCH model, which included leverage effects and asymmetry terns. It is 

described in the conditional variance equation 2.26 

𝐿𝑛(𝛿𝑡
2) = 𝜔 + ∑ 𝛽𝑗𝐿𝑛(𝛿𝑡−𝑗

2 ) + ∑ 𝛼𝑖

𝑞

𝑖=1

𝑝

𝑗=1

{|
𝜀𝑡−𝑖

𝛿𝑡−𝑖
| − √

2

𝜋
} − 𝛾𝑖

𝜀𝑡−𝑖

𝛿𝑡−𝑖
                    (2.26) 

 

The model is asymmetric since the level  
𝜀𝑡−𝑖

𝛿𝑡−𝑖
 is incorporated with coefficient 𝛾𝑖. Since 

the coefficient is negative, positive returns shocks produce low volatility than negative 

shocks; keeping other factors constant. To capture the asymmetric response of the time-
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varying variance to shocks, the EGARCH (1, 1) is used alongside the mean equation as 

illustrated in equation 2.30. 

Equation 2.27 is the mean equation: 

𝑟𝑡 = 𝜇 + 𝜀𝑡                                                                                                                    (2.27) 

And the Variance equation in 2.28. 

𝐿𝑛(𝛿𝑡
2) = 𝜔 + 𝛽1𝐿𝑛(𝛿𝑡−1

2 ) + 𝛼1 {|
𝜀𝑡−1

𝛿𝑡−1
| − √

2

𝜋
} − 𝛾1

𝜀𝑡−1

𝛿𝑡−1
                               (2.28) 

 

For EGARCH (p, q) model, the one-step-ahead conditional variance forecast 𝛿𝑡+1/𝑡
^  is 

estimated using equation 2.29 

𝐿𝑛(𝛿𝑡
2) = 𝜔 + ∑ 𝛽𝑗𝐿𝑛(𝛿𝑡−𝑗+1

2 ) + ∑ 𝛼𝑖

𝑞

𝑖=1

𝑝

𝑗=1

{|
𝜀𝑡−𝑖+1

𝛿𝑡−𝑖+1
| − √

2

𝜋
} − 𝛾𝑖

𝜀𝑡−𝑖+1

𝛿𝑡−𝑖+1
          (2.29) 

 

2.3.2.2 The Glosten, Jagannathan and Runkle GARCH (GJR-GARCH) Model 

The GJR-GARCH model was developed by Glosten, Jagannathan & Runkle (1993). Its 

variance equation is expressed in equation 2.30. 

𝛿𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑝
𝑖=1 𝛾𝑡−𝑖 + ∑ 𝛽𝑗𝛿𝑡−𝑗

2 +  𝛾𝑖
𝑞
𝑗=1 𝐼𝑡−𝑖𝛾𝑡−𝑖                                                  (2.30) 

 

Where 𝛼 , 𝛽, 𝑎𝑛𝑑 𝛾  are model coefficients, 𝐼 is a dummy variable that takes zero (one) 

when 𝑦𝑡−𝑖 is positive (negative). If 𝑦𝑡−𝑖 is positive, negative errors are leveraged 

(negative shocks or bad news have a higher effect than the positive ones). The 

parameter of the model is assumed to be positive and that 
𝛼+𝛽+𝛾

2
< 1. If all leverage 

coefficients are zero, then the GJR-GARCH model is reduced to a GARCH model. The 

TGARCH model of Zakoian (1994) is similar to the GJR-GARCH but models the 

conditional standard deviation instead of the conditional variance. The corresponding 

one-step ahead conditional variance forecast in the case of the GJR-GARCH (p, q) 

model is  

𝛿𝑡+1/𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑝

𝑖=1

𝛾𝑡−𝑖+1 + ∑ 𝛽𝑗𝛿𝑡−𝑗+1
2 + 𝛾𝑖

𝑞

𝑗=1

𝐼𝑡−𝑖+1𝛾𝑡−𝑖+1                            (2.31) 
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2.3.2.3 The Power GARCH (PGARCH) Model 

Ding, Engle & Granger (1993) developed the APARCH (𝑝, 𝑞) specification, to capture 

asymmetry in a series. The variance equation of APARCH (p, q) can be expressed as 

in equation 2.32. 

𝜎𝑡
𝛿 = 𝜔 + ∑(𝛼𝑖|𝛾𝑡−𝑖| − 𝛾𝑖

𝑝

𝑖=1

𝛾𝑡−𝑖)^𝛿 + ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿

𝑞

𝑗=1

                                                   (2.32) 

Where; 𝜔 > 0, 𝛿 > 0, 𝛼𝑖 ≥ 0, −1 < 𝛾𝑖 < 1, 𝑖 = 1, … , 𝑝, 𝛽𝑗 ≥ 0, 𝑗 =

1, … , 𝑞,   𝑎𝑛𝑑 𝛽, are the standard ARCH and GARCH parameters,𝛾𝑖 are the leverage 

parameters, and 𝛿is the parameter for the power term.  

 

The symmetric model sets 𝛾𝑖 = 0, for all 𝑖. When 𝛿 = 2 Equation 2.32 is reduced to a 

standard GARCH model that captures leverage effect, and when 𝛿 = 1the conditional 

standard deviation was estimated Granger (1993). Additionally, the flexibility of the 

APARCH model can be enhanced by incorporating 𝛿 as an additional parameter. For 

the APARCH model, one-step-ahead conditional variance forecasting is given by 

equation 2.33. 

𝜎𝑡+1/𝑡
𝛿 = 𝜔 + ∑(𝛼𝑖|𝛾𝑡−𝑖+1| − 𝛾𝑖+1𝛾𝑡−𝑖+1)𝛿

𝑝

𝑖=1

 + ∑ 𝛽𝑗𝜎𝑡−𝑗+1
𝛿

𝑞

𝑗=1

                       (2.33) 

 

2.3.2.4 Threshold GARCH Model 

The TGARCH model (Glosten et al., 1999) is an advancement of EGARCH and the 

GJR-GARCH model. Given 𝑌𝑡 is the 𝑖. 𝑖. 𝑑 random variable with E (𝑌𝑡) = 0 and Var (𝑌𝑡) 

= 1. Then (𝑒𝑡) is the threshold GARCH process (p, q) satisfying an equation 2.34. 

𝜀𝑡 = 𝜎𝑡𝑌𝑡 

𝜎𝑡 = 𝜔 + ∑ 𝜔𝑖
(1)

𝜀𝑡−𝑖
(1)

𝑝

𝑖=1

− 𝜔𝑖
(2)

𝜀𝑡−𝑖
(2)

+ ∑ 𝛾𝑗

𝑞

𝑗=1

𝜎𝑡−𝑗                                                         (2.34)  

Where 𝜀𝑡−𝑖
(1)

 = max (𝑒𝑡, 0), 𝜀𝑡−𝑖
(2)

= min (𝑒𝑡,0) dan 𝑒𝑡 = 𝜀𝑡−𝑖
(1)

 - 𝜀𝑡−𝑖
(2)

  are the effects of the 

threshold. 𝑖 = 1, 2, … … … … 𝑝    𝑎𝑛𝑑 𝑗 = 1, 2, … … … 𝑞, 𝛾𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

For the TGARCH (p, q) model, the one-step-ahead forecasting of the conditional 

variance is given by equation 2.35 
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𝜎𝑡+1/𝑡 = 𝜔 + ∑ 𝜔𝑖+1
(1)

𝜀𝑡−𝑖+1
(1)

𝑝

𝑖=1

− 𝜔𝑖
(2)

𝜀𝑡−𝑖+1
(2)

+ ∑ 𝛾𝑗

𝑞

𝑗=1

𝜎𝑡−𝑗+1                                     (2.35)  

𝜎𝑡−𝑖: is the conditional variance and,  

𝜀𝑡: Disturbance term.  

p and q are the orders of the GARCH and ARCH terms, respectively i.e., the number 

of lagged 𝜇2 and 𝑉2 terms, respectively. 

 

2.3.2.5 Integrated GARCH Model 

The IGARCH models are the unit-root GARCH models. Like the ARIMA models, a 

vital attribute of IGARCH models is that the effect of past squared shocks 𝑛𝑡−𝑖 =

𝑎𝑡−𝑖
2 − 𝜎𝑡−𝑖

2   for 𝑖 >  0 on 𝑎𝑡
2 is persistent.  The IGARCH assumes that the persistence 

parameter is equal to 1 hence does capture features such as unconditional variance 

(Engle & Bollerslev. 1986). An IGARCH (1, 1) modal is expressed in 2.36. 

𝜎𝑡
2 = 𝛼0 + 𝛽1𝜎𝑡−1

2 + (1 − 𝛽1)𝑎𝑡−1
2                                                                                  (2.39) 

Where 𝜀𝑡 is defined as before and1 > 𝛽1 > 0.  

 

2.4 Some Applications of GARCH Type Models 

Conditional heteroskedastic models have been applied in various econometric and 

financial time series data.  The most common area where the GARCH-type class of 

models has been commonly applied is the stock market to model and forecast stock 

returns. Alberg, Shalit, & Yosef (2008) studied estimating stock market volatility using 

two Tel Aviv Stock Exchange (TASE) indices: TA100 and TA25. The TA25 dataset 

consisted of 3 058 daily indices from 20th October 1992 to 31st May 2005, whereas 

TA100 data had 1 911 daily indices from 2nd July 1997 to 31st May 2005.  The authors 

compared symmetric and asymmetric GARCH models. Among the models tested were 

the standard GARCH and three asymmetric models (EGARCH, GJR-GARCH, and 

APARCH). The two Student’ t-distributions outperformed the normal density 

distribution in both series and across the models. Besides, the asymmetric GARCH 

models had better forecasting ability than the standard GARCH based on the AIC and 

log-likelihood values.  Among competing asymmetric GARCH models, the EGARCH 

model using a skewed Student- t distribution for TA100 index data (AIC = 2.697; Log-

Likelihood = -2566.9) and the TA25 index (AIC = 2.665 and Log-Likelihood = -
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4065.4) was the best fit model than the asymmetric GARCH, GJR and APARCH 

models. 

 

Goudarzi & Ramanarayanan (2011) investigated the impact of good and bad news on 

volatility in the Indian stock market amidst the 2008-2009 global financial crisis. Two 

classes of asymmetric volatility models were evaluated (EGARCH and TGARCH) 

using the Bombay Stock Exchange (BSE) 500 stock index. The daily BSE500 stock 

index covered ten years from 6th July 2000 to 20th January 2009. The models were 

estimated using the robust method of Bollerslev-Wooldridge’s QMLE assuming a 

Gaussian distribution. Among the competing orders of EGARCH and TGARCH 

models, TGARCH (1,1) {AIC = -5.6729, SBIC = -5.6568) was the best fit model for 

the BSE500 series. The study results showed that the BSE500 returns react to the good 

and bad news asymmetrically, as a common stylized fact in financial series.  The results 

further supported the presence of leverage effect in the BSE500 returns, indicating that 

negative news has more impact on volatility than positive news. 

 

Wasiuzzama & Angabini (2011) examined the volatility of the Malaysian stock market 

using both symmetric and asymmetric GARCH models. The Kuala Lumpur Composite 

Index (KLCI) was split into two sets’ one from June 2000 to the December 2007 (before 

the 2007/08 financial crisis) and the second from June 2000 to March 2010 (after the 

crisis). The study findings favoured AR (4) as the best fit model for the conditional 

mean equation. The GARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1, 1) were the best 

fit for the conditional variance equation. The three conditional heteroscedastic models 

significantly captured the ARCH effect and volatility clustering in the two time periods. 

As common features in a financial time series, the KLCI exhibited leptokurtosis, 

clustering effect, asymmetry, and leverage effect.  

 

Ugurlu, Thalassinos and Muratoglu (2014) modelled volatility in the stock markets for 

four European and Turkey countries using GARCH models. The authors used daily 

data from Bulgaria (SOFIX), the Czech Republic (PX), Poland (WIG), Hungary 

(BUX), and Turkey (XU100).  The study results revealed that GARCH, GJRGARCH, 

and EGARCH effects exist in PX, BUX, WIG, and XU returns. The SOFIX index had 

no significant GARCH effects. Both markets revealed the presence of volatility 
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clustering of external shocks driven by old news and leverage effect. Besides, the Polish 

stock market only had the longest memory on variance.  

 

Dana (2016) modelled and estimated volatility in Jordan’s stock market using 

symmetric (ARCH, GARCH) and asymmetric GARCH models (EGARCH). The 

stocks return volatility for Amman Stock Exchange (ASE) from January 2005 to 

December 2014. The study results revealed that the two symmetric models capture 

common stylised facts of financial time series in the ASE: volatility clustering and 

leptokurtic distribution. The EGARCH model showed evidence of leverage effect in 

the stock returns at ASE. 

 

Polodoo (2011) examined the effect of exchange rate volatility on economic 

performance in small island developing countries. The study employed annual data 

from 1999 to 2010 and computed z-scores as proxy for the exchange rate volatility. 

Panel ordinary least square regression analysis was employed with heteroscedastic- 

robust standard errors to correct heteroscedasticity. The study findings showed that 

exchange rate volatility positively influences economic growth. The study depicts a 

methodological gap in measuring exchange rate volatility using GARCH class of 

models. 

 

In Iran, Pahlavani & Roshan (2015) compared ARIMA and hybrid ARIMA-GARCH 

models (ARIMA-GARCH, ARIMA-IGARCH, ARIMA-GJR, and ARIMA-EGARCH) 

in forecasting the exchange rate of Iran. The dataset used was the daily exchange rate 

against the U.S. Dollar (IRR/USD) from 20th March 2014 to 20th June 2015.  Based on 

the minimisation of prediction errors, the study findings indicated that ARIMA ((7,2), 

(12)) –EGARCH (2,1) was the best fit for the data (RMSE = 0.0007, MAE = 0.0006, 

and TIC = 0.500069).  The model efficiently captured the volatility and leverage effect 

in the exchange rate returns and produced better forecasts than other models. 

 

The application of asymmetric GARCH models is not limited to financial time series 

models. Ali (2013) evaluated EGARCH, GJR-GARCH, TGARCH, AVGARCH, 

NGARCH, IGARCH, and APARCH models to fit functional associations of the 

pathogen indicators for recreational activities in Huntington Beach, Ohio, United 
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States. The data used spanned 2006 to 2008, with 225 daily observations. The study 

compared GED, Student’s t, exponential, normal, and inverse Gaussian distributions 

besides their skewedness. The study findings indicated that TGARCH better fits the 

pathogens data with turbidity, rainfall, dew point, river flow, and cloud cover being 

significant predictors (AIC = 1.146, BIC = 1.313, HQ = 1.214 Log Likelihood = -

117.940). 

 

Zhang, Yao, He, & Ripple (2019) compared the performance of two regime-switching 

(MMGARCH and MRS-GARCH) and the single-regime GARCH models (GARCH, 

GJR-GARCH, and EGARCH) in examining and forecasted the volatility of crude oil 

market {West Texas Intermediate (WTI) and Brent}. The study findings indicated that 

the MRS-GARCH model accurately estimated weekly data based on the in-sample 

forecasts. The out-sample forecasts showed the limited significance of under the 

regime-switching approach.  The authors established no significant difference between 

the regime-switching and the single-regime GARCH models.  

 

Atoi (2014) modelled the volatility of Nigeria’s All Share Index from January 2, 2008, 

to February 11, 2013, using the first-order symmetric and asymmetric GARCH models 

with an assumption of Normal, Student’s-t, and generalized error distributions. The 

study findings established the leverage effect, indicating that volatility responds more 

to bad than the good news of the same threshold. The best fit volatility model based on 

the minimisation of RMSE and Theil Inequality Coefficient was the Power-GARCH 

(1, 1) with student’s t error distribution. The study recommended that future empirical 

works consider alternative error distributions to obtain a robust volatility forecasts that 

guarantees a sound policy decision. 

 

Oberholzer & Venter (2015) compare how GARCH (1,1), GJR-GARCH (1,1), and 

EGARCH (1,1) models to analyse the 2007-2009 financial crisis caused volatility in 

the five indices on the Johannesburg Stock Exchange (JSE). The authors relied on 3, 

326 daily closing prices for the top forty indexes (J200), Mid Cap Index (J201), Small 

Cap Index (J202), All-Share Index (J203) and Fledgling Index (J204) spanning January 

2002 to end February 2014. Based on the minimization of AIC and SIC, the GJR-

GARCH (1,1) best fitted all the indices except the J204, where the EGARCH (1,1) 
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model was the best fit. Moreover, the results indicated the presence of leverage effect 

in all the series. 

 

Bouseba & Zeghdoudi (2015) centred their study on GARCH models to examine VaR 

of monthly oil price data from January 1, 2009 to December 31, 2014, consisting of 2, 

192 data points. The authors discovered that normal GARCH models explain the non-

normal distribution of energy prices. In light of this, the error term will, as a result, 

exhibit Skewness and leptokurtic distribution. Normal GARCH VaR estimates perform 

better than the usually employed by energy companies. He recommended using the 

stable GARCH for accounting for the non-Gaussian distribution of the energy returns 

and volatility. 

 

The ARCH-type class of models has also been used to model inflation. Benedict (2013) 

evaluated how the ARCH-type models can capture the volatility of Ghana’s monthly 

inflation from January 1965 to December 2012. The author compared three models: 

ARCH, GARCH, and the EGARCH. Overall, the study findings demonstrated that the 

EGARCH (2, 1) best fitted the data outperforming other models in terms of 

minimisation of AIC (5.09), BIC (5.16), and MAE (2.88). As opposed to the common 

stylized fact, the inflation data showed an absence of the leverage effect since positive 

shocks increased the volatility of the inflation rate more than the negative shocks of 

equal size. 

 

Ngailo, Luvanda, & Massawe (2014) focused on modelling Tanzania’s inflation rate 

using ARCH family models. The study used monthly data from January 1997 to 

December 2010, constituting 168 observations. Based on the minimization of the 

prediction errors, evaluation metrics showed that the GARCH (1, 1) model best fitted 

the data (AIC = 474.8, BIC = 487.3, log-likelihood = 233.4). In Ghana, Nortey et al. 

(2014) compared the ARCH, GARCH, and EGARCH models using Ghana’s monthly 

inflation from January 2000 to December 2013. The study findings indicated that the 

EGARCH (1, 2) model with 𝐴𝑅𝐼𝑀𝐴 (3, 1, 2)  × (0, 0, 0)12 as the mean equation best 

fitted the data. The mean equation outperformed other competing ARIMA type models 

with AIC and the BIC values of 3.41 and 3.58, respectively. The variables equation for 

the mean model residuals has AIC and BIC values of 2.49 and 2.76, respectively, as the 
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least scores compared to other competing ARCH, GARCH, and EGARCH models. The 

study has illustrated that asymmetric models (in this case, the EGARCH model) 

outperform the standard ARCH and GARCH models. Thus, in the current study, we 

compare competing asymmetric models only as stated previously. 

 

Onwukwe, Bassey, & Isaac (2011) compared three heteroscedastic models, namely: 

GARCH (1,1), EGARCH (1,1), and GJR-GARCH using time series behaviour of daily 

stock returns of four firms (UBA, Unilever, Guinness, and Mobil) listed in the Nigerian 

over the period between January 2, 2002 and December 31, 2006. As stylized features 

of financial series, the return series of each firm exhibited leverage effect, leptokurtosis, 

volatility clustering, and negative skewness. The study findings indicated that the GJR-

GARCH (1, 1) produces a better fit to all the return series in both the in-sample and 

out-of-sample forecasts evaluation period. The RMSE for the model of UBA, Mobil, 

Unilever, and Guinness returns were 1.326, 1.087, 1.639, 1.308, respectively. In 

extension, the current study compared the five asymmetric conditional 

heteroskedasticity classes of models by including TGARCH and PGARCH using 

Kenya’s monthly exchange rate (January 1993 to June 2021) and BoP data (August 

1998 to June 2021). 

 

GARCH-type class of models has also been applied to exchange rate data. Thorlie, 

Song, Wang, & Amin (2014) modelled the Sierra Leones’ exchange rate volatility using 

asymmetric GARCH models. The ARMA, GARCH, and asymmetric GARCH models 

were compared using the Leones/USA dollars exchange rate returns computed from the 

monthly data from January 2004 to December 2013. The study findings demonstrated 

that the Asymmetric (GARCH) and GARCH model assuming non-normal than the 

normal distribution better estimated the conditional variance in the series. Based on 

AIC and BIC, the GJR-GARCH model using the skewed Student t- distribution was the 

best fit for the Sierra Leone exchange rate volatility (AIC -7.5929, BIC = -7.4061)). 

Leverage effect and asymmetry were also present in the exchange rate returns as a 

common stylized fact of financial time series. 

 

Kandora (2016) modelled exchange rate volatility using asymmetric GARCH Models 

in Sudan. A comparison of ARMA, GARCH, and Asymmetric GARCH models was 
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done using the monthly Sudanese Pound SDG/USA dollars exchange rate return series 

from January 1999 to December 2013. The study employed the AIC and BIC to select 

the best fit model among several competing mean and variance models. The best fit 

mean model was ARIMA (1, 1, 2) with AIC and BSC values of -3.7944 and -3.7229, 

respectively. Overall, the conditional variance models were better when fitted assuming 

the student t-distribution than normal distribution. The inclusion of the variance 

equation showed that ARIMA (1,1,2) - DGE-GARCH (1, 1) {AIC = -7.844, BIC = -

7.665} outperformed ARIMA (1,1,2) - GARCH (1,1) (AIC = -7.501, BIC = -7. 357), 

and ARIMA (1,1,2) - GJR-GARCH (1, 1) {AIC = -7.709, BIC = -7.547}. Evaluation 

of the model parameters showed the existence of leverage effect in the series. The 

authors also demonstrated that the asymmetric GARCH models show asymmetry in 

exchange rate returns. As a comparative study, the current study evaluates whether 

Kenya’s exchange rate shows a leverage effect and examines the nature of its volatility 

using a selected asymmetric ARCH type class. The analysis is also extended to the 

balance of payment series. 

 

The study of Nwoye (2017) examined the volatility of the exchange rate of Nigeria 

Naira against the US Dollar using GARCH family models (GARCH, EGARCH, GJR 

–GARCH, AVGARCH, TGARCH, NGARCH, NAGARCH, APARCH, ALLGARCH, 

and GARCH). The author used monthly exchange rates data from January 1999 to 

December 2012. The EGARCH (2,2) best fitted the data (AIC = -6.497, BIC = -6.339, 

HQ = -6.433). The model demonstrated evidence of volatility clustering, leverage 

effect, and asymmetric effect in the naira exchange rate against the USD. 

 

Maqsood et al. (2017) employed the GARCH type class of models to examine the 

volatility of the daily returns of the Kenyan stock market. The returns were computed 

using the daily closing prices of the Nairobi Securities Exchange (NSE) index from 

March 18, 2013 to February 18, 2016 (730 data points excluding public holidays). The 

study compared both symmetric and asymmetric type, heteroscedastic models. Based 

on the AIC and BIC minimization criterion, TGRACH (1,1) {AIC = -8.827, BIC -

8.795} best capture the volatility clustering and leverage effect outperforming other 

heteroscedastic models; which are: GARCH (1,1), GARCH-M (1,1), EGARCH (1,1) 

and PGARCH (1,1). In extension, the current study compared the asymmetric 
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Conditional Heteroskedasticity class of models to include TGARCH and GJR-

GARCH, which was not included in the study. Besides, the exchange rate and BoP data 

spanned from January 1993 to June 2021 and from August 1998 to June 2021, 

respectively. 

 

Petrică & Stancu (2017) empirically examined how symmetric (ARCH and GARCH) 

and the asymmetric GARCH models (EGARCH, TARCH, and PARCH) can capture 

the volatility of daily returns of EUR/RON exchange rate. The data set spanned 4th 

January 1999 to 13th June 2016, constituting 4439 observations. The model parameters 

were estimated using the MLE method assuming several distributions: Normal, 

Student’s t, GED, Student’s with fixed degrees of freedom, and GED with fixed 

parameters. The best model for data was EGARCH (2,1), assuming that the data follows 

a student’s t distribution (AIC ≈ 0.7880). Recently, Aliyev, Ajayi & Gasim (2020) 

evaluated asymmetric market volatility using EGARCH and GJR-GARCH. The 

analysis relied on daily data Nasdaq-100 series from 4th January, 2000, to 19th March, 

2019. The study revealed that the volatility and leverage effect were present.  Besides, 

Nasdaq-100 index returns’ volatility exhibited clustering, a good attribute for investors 

who hedge against low and high prices. 

 

In Kenyan, Okeyo, Ivivi, & Ngare (2016) modelled inflation volatility using the ARCH 

-type class of model. The authors used inflation data from January 1985 to April 2016. 

Three ARCH family type models (ARCH, GARCH, GJR GARCH, and the EGARCH) 

were compared. The study findings indicated that the EGARCH (1, 1) with GED was 

the best model to forecast Kenya’s inflation. The study recommended that policy 

makers involved in forecasting inflation rates ponder Heteroscedastic models because 

they capture volatilities. 

 

In addition, Fwaga et al (2017) evaluated an effective Arch-type class of model for 

forecasting Kenya’s monthly inflation. The data spanned January 1990 to December 

2015. The study compared competing orders of the standard GARCH models 

EGARCH (1, 1). The ARCH effects test using the Engle Arch test showed that 

heteroscedasticity is present in the inflation return series.  The study evaluated the 

competing models using AIC and BIC values. The results showed that EGARCH (1,1) 
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{AIC = -0.1668; BIC =-0.10698} model was best fit model for forecasting Kenyan 

inflation data outperforming GARCH (1,1), GARCH (1,2), GARCH (2, 1) and GARCH 

(2,2). The current study has important findings relevant to the current study. The study 

has demonstrated that the EGARCH model, an asymmetric model, outperforms the 

standard GARCH model. Thus, in the current study, we compare competing 

asymmetric models only as stated previously. 

 

In Bangladesh, Alam & Rahman (2012) modelled the volatility of the daily foreign 

exchange rate (BDT/USD) using GARCH type models (which included GARCH, 

EGARCH, TARCH, and PARCH). The performance of the selected GARCH class of 

models was compared with the AR and ARMA models. The data used spanned 3rd July 

2006 to 30th April 2012, making up 1513 trading days. The crucial finding from the 

study is that the GARCH type models demonstrate the existence of volatility cluttering 

and leverage effect. The EGARCH and TARCH models, been asymmetric ARCH 

models, outperformed all the other competing models in fitting annualized returns and 

transaction cost in both in and out-sample data set. Therefore, the current study 

compared asymmetric models with the inclusion of GRJ-GARCH and APARCH while 

fitting and forecasting the volatility of Kenya’s exchange rate data and BOP. 

 

In Kenya, Omari, Mwita, & Waititu (2017) modelled Kenya’s exchange rate in US 

dollars to Kenya Shilling (USD/KES) volatility using GARCH models. The data used 

was daily rates spanning January 3, 2003 to December 31, 2015, constituting 2818 

observations.  The authors employed symmetric (GARCH (1, 1) and GARCH-M (1,1,)) 

and asymmetric models (EGARCH (1, 1), GJR-GARCH (1, 1), and APARCH (1, 1)). 

Based on the minimization of BIC and AIC, the ARMA (2, 0) was the best fit mean 

equation (AIC = 213, BIC = 213).  Overall, the asymmetric models (EGARCH (1, 1) 

(AIC = -8.2004, BIC = 8.1857), GJR-GARCH (1, 1) (AIC = -8.5177, BIC = -8.5029) 

and APARCH (1, 1)) (AIC = -8.5119, BIC = -8.4950)) outperformed the symmetric 

models (GARCH (1, 1) (AIC = -8.5166, BIC = -8.5039), and GARCH-M (1,1)) (AIC 

= -8.8778, BIC = -8.8630). The symmetric models showed the existence of asymmetry 

and leverage effect in the series (𝛾 < 0). Due to the better performance of asymmetric 

than the symmetric models, the authors suggested that future studies can include other 

asymmetric GARCH-type models.  Thus, the current study includes GJR-GARCH and 
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TGARCH for comparison using Kenya’s exchange rate data from January 1993 to June 

2021. 

 

2.5 Summary of ARCH-type Models 

Table 1: Summary of ARCH type class of Models. 

 

Model  

Type of 

model 

Leverage effect 

property 

Ability to embrace thick 

tail property 

ARCH Symmetric Fail to capture 

leverage effects 

Does not fully   embrace the 

thick tail 

GARCH Symmetric Fail to capture 

leverage effects 

Does not fully embrace the 

thick tail 

M-GARCH Symmetric Fail to capture 

leverage effects 

Does not fully embrace the 

thick tail 

EGARCH Asymmetric Captures the leverage 

effect by capturing the 

asymmetric 

innovations 

Captures thick tail 

property. 

GJR-GARCH Asymmetric Captures leverage 

effect property 

Captures thick tail 

property. 

TGARCH Asymmetric Captures leverage 

effect property 

Captures thick tail 

property. 

PGARCH Asymmetric Captures leverage 

effect property 

Captures thick tail 

property. 

IGARCH Asymmetric Captures leverage 

effect property 

Captures thick tail 

property. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Location of the Study 

This study focuses on Kenya’s Economy in examining the applicability of conditional 

heteroscedastic class of models, namely; Asymmetric-GARCH type models, to fit and 

predict exchange rate volatility and BoP in Kenya. 

 

3.2 Research Design 

The study used descriptive research design. The descriptive research design explores 

the stylized fact properties of the two time series data including volatility clustering, 

negative kurtosis, and excess skewness. The features were determined by the use of 

data visualization and descriptive statistics. Besides, the two variables are time series 

data. The selected Asymmetric-Arch type models learn the past behaviour of the series 

to determine the best-fit parameters for the data and forecast future occurrences from 

the best fit model. Thus, the study is partly retro-prospective (looking into the past) and 

prospective (looking into the future). 

 

3.3 Data Collection 

The current study employed time series analysis hence no defined population and 

sample size. The analysis used monthly exchange rates data in Kenya from January 

1993 to June 2021 as a convenience sample available during the study. The research 

used secondary data obtained from the Central Bank of Kenya (CBK) website 

(https://www.centralbank.go.ke/rates/forex-exchange-rates/). The Kenya’s exchange 

rate is referenced to the US dollar.  The period is suitable since the sample covers the 

period when Kenya was already on a flexible exchange rates regime. The secondary 

data on BoPs was also extracted from the CBK website (https://www.centralbank

.go.ke/statistics/balance-of-payment-statistics/). The monthly BoP data spanning from 

August 1998 to June 2021. The respective series was downloaded in October 2021, and 

have 342 data points and 275 data points considered adequate for a time series analysis 

technique. 

 

https://www.centralbank.go.ke/rates/forex-exchange-rates/
https://www.centralbank.go.ke/statistics/balance-of-payment-statistics/
https://www.centralbank.go.ke/statistics/balance-of-payment-statistics/
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3.4 Data Analysis 

The R statistical software (R Core Team, 2016) was used to analyse the data. 

Preliminary analysis done included descriptive statistics, trend analysis, and stationarity 

test. The selected asymmetric GARCH models (IGARCH, TGARCH, APARCH, GJR-

GARCH, and EGARCH) were fitted to the stationary log-differenced data based on the 

functions in the RUGARCH (Ghalanos, 2022). 

 

3.4.1 Fitting the Asymmetric-GARCH Type Models 

The conditional variance of return series is expressed as a function of constant, past 

volatility, and past forecast variance in the generalised ARCH model (Engle, 1982 & 

Bollerslev, 1986). The model parameters were estimated using the MLE method. 

 

3.4.1.1 The GARCH Model 

The conditional variance for the generalised ARCH (p, q) model is defined as: 

𝑉𝑡
2 = 𝛽0 + ∑ 𝛼𝑟 𝜇𝑡−𝑟

2𝐾
𝑟=1 + ∑ 𝛽𝑣 𝑉𝑡−𝑣

2𝑆
𝑣=1                (3.1) 

where𝛽0 > 0,  𝛼𝑖 ≥ 0, 𝛽𝑗 > 0 

𝑉2: is the restricted variance   

𝜇2: Error term referred to as disturbance term.  

K is the order of the generalised terms, i.e., the amount of lagged 𝜇2 terms 

S is the size of the ARCH terms, i.e., the amount of lagged 𝑉2 terms, 

Both 𝛽𝑣 and 𝛼𝑟 are greater than zero, and the component ∑ 𝛼𝑟
𝐾
𝑟=1 + ∑ 𝛽𝑣

𝑆
𝑣=1 < 1 to 

achieve stationary. Additionally, the restraints 𝛼𝑟 ≥ 0 and 𝛽𝑣 ≥ 0 ensures that 𝑉2is 

strictly positive (Poon, 2005). 

 

3.4.1.2 Exponential GARCH (EGARCH) Model 

The EGARCH model with its leverage and asymmetry properties in its equation is 

defined with conditional variance written as: 

𝐿𝑛(𝑉𝑡
2) = 𝜔 + ∑ 𝛽𝑣𝐿𝑛 (𝑉𝑡−𝑣

2 ) + ∑ 𝛼𝑟
𝐾
𝑟=1

𝑆
𝑣=1 {|

𝜇𝑡−𝑟

𝑉𝑡−𝑟
| − √

2

𝜋
} − 𝛾𝑟

𝜇𝑡−𝑟

𝑉𝑡−𝑟
                       (3.2) 

𝑉2 = the conditional variance and,  

𝜇2 = Disturbance error term.  

K = the order of amount of lagged 𝜇2 terms 

S= the order of the number of lagged 𝑉2 terms. 
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The model is asymmetric in nature because the component  
𝜇𝑡−𝑟

𝑉𝑡−𝑟 
  is included with 

coefficient  𝛾𝑟. Since the constant is negative, positive returns shockwaves cause less 

volatility than negative return shocks when other factors remain constant. 

 

3.4.1.3 Glosten, Jagannathan and Runkle GARCH(GJR-GARCH) Model 

The GJR-GARCH variance equation is defined by; 

𝑉𝑡
2 = 𝜔 + ∑ 𝛼𝑟

𝐾
𝑟=1 𝛾𝑡−𝑟 + ∑ 𝛽𝑣 𝛿𝑡−𝑣

2 +  𝛾𝑟
𝑆
𝑣=1 𝐼𝑡−𝑟𝛾𝑡−𝑟                                              (3.3) 

Where 𝛼 , 𝛽, 𝑎𝑛𝑑  𝛾  are model parameters.  

K and S are the lagged orders of the 𝛾 and 𝛿𝑡−𝑣
2  terms, 

𝐼 = Is a dummy variable, also known as the indicator function, and takes the value zero 

when the parameter 𝛾𝑡−𝑟 is negative and one if it is positive. If 𝛾 is positive, negative 

shocks have a larger effect size than positive shocks. The model parameters are 

assumed to be positive and that  
𝛼+𝛽+𝛾

2
< 1, if leverage coefficients are zero, then the 

GJR-GARCH model becomes the GARCH model. 

 

3.4.1.4 Power GARCH (PGARCH)Model 

The PGARCH or APARCH (K, S) has the variance equation written as 

𝑉𝑡
𝛿 = 𝜔 + ∑(𝛼𝑟|𝛾𝑡−𝑟| − 𝛾𝑟

𝐾

𝑟=1

𝛾𝑡−𝑟)^𝛿 + ∑ 𝛽𝑣𝑉𝑡−𝑣
𝛿

𝑆

𝑣=1

                                                 (3.4) 

Where; 

𝜔 > 0, 𝛿 > 0, 𝛼𝑟 ≥ 0, −1 < 𝛾𝑟 < 1, 𝑟 = 1, … , 𝐾,   𝛽𝑣 ≥ 0, 𝑣 = 1, … , 𝑆,   𝛼  𝑎𝑛𝑑 𝛽,  

, are the normal ARCH and generalised ARCH parameters, 𝛾𝑖 is the leverage effect 

parameter and 𝛿 is the power term. 

 

3.4.1.5 Threshold GARCH (TGARCH) Model 

The TGARCH model is an extension of the exponential GARCH and the GJR-GARCH 

model. Its conditional variance is given by 

𝑉𝑡 = 𝜔 + ∑ 𝛼𝑟
(1)

𝜇𝑡−𝑟
(1)

𝐾

𝑟=1

− 𝛼𝑟
(2)

𝜇𝑡−𝑟
(2)

+ ∑ 𝛾𝑣

𝑆

𝑣=1

𝑉𝑡−𝑣                                                          (3.5)  

Where 𝜇𝑡−𝑟
(1)

 = max (𝑒𝑡, 0),  𝜇𝑡−𝑟
(2)

= min (𝑒𝑡, 0) dan 𝑒𝑡 = 𝜇𝑡−𝑟
(1)

 - 𝜇𝑡−𝑟
(2)

  are the effects of the 

threshold. 

K and S are the lagged orders 
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3.4.1.6 Integrated GARCH (IGARCH) Model 

The IGARCH model is similar to the ARMA model and is a unit-root GARCH model. 

A key feature of the IGARCH model is that the effect of previous squared residuals 

 𝜋𝑡−𝑟 = 𝑎𝑡−𝑟
2 − 𝑉𝑡−𝑟

2   for r >0 on 𝑎𝑡
2 is persistent. A variance IGARCH (K, S) model is 

expressed in equation 3.6. 

𝑉𝑡
2 = ω +  ∑ 𝛽r 𝑉𝑡−r

2

𝐾

𝑟=1

+ ∑(1 − 𝛽r) 𝑎𝑡−v
2

𝑆

𝑣=1

                                                                 (3.6) 

 

Where  1 > 𝛽𝑟 > 0. 𝑉2 = the conditional variance  

K and S are the order of the number of lagged 𝑉𝑡−r
2 , and lagged 𝑎𝑡−v

2  terms, respectively. 

 

3.4.2 Estimation of Model Parameters 

The MLE method was used in parameter estimation. Basically, the method works by 

looking for the optimum parameter values for the given data (Brooks, 2008). In the 

form of restricted heteroscedasticity, the mean and variance GARCH (1, 1) is defined 

as; 

𝑋𝑡 = 𝜇 + 𝜀𝑡                   (3.7) 

Where  𝜀𝑡~𝑁(0, 𝛿𝑡
2) 

𝛿𝑡
2 = 𝛽0 + 𝛼1𝑎𝑡−1

2 + 𝛽1𝛿𝑡−1
2                                                                          

 

Where the variance of the errors terms 𝛿𝑡
2 is time-varying. The log-likelihood function 

(LLF) by Weiss, Bollerslev, and Wooldridge (1986) and Brooks (2008) for the 

disturbances is defined as; 

𝐿 = −
1

2
log(2𝜋) −

1

2
∑ log 𝛿𝑡

2𝑇
𝑖=1 −

1

2
∑

(𝑋𝑡−𝜇−∅𝑟𝑡−1)^2

𝛿𝑡
2                                                𝑇

𝑖=1 (3.8) 

where the component −
1

2
log(2𝜋)is a constant which depends on the parameters. T is 

the number of observations and 𝑟𝑡 is exchange rate return.  

 

Maximization of the log-likelihood function (LLF) necessitates the minimization of 

∑ log(𝛿𝑡
2𝑇

𝑖=1 ), ∑ (𝑋𝑡 − 𝜇 − ∅𝑋𝑡−1)2/(𝛿𝑡
2𝑇

𝑖=1 ) and the variance error term (Brooks, 

2008). The standard normal distribution does not capture fat tails in a series. Other 

distributions such as the GED or student distribution are often used. The MLE of the 
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parameters is achieved by statistical maximization of the LLF using the Marquardt 

algorithm (Bollerslev & Wooldridge, 1992). 

 

3.4.3 Model Selection Criteria 

The model selection criteria examine whether the fitted model optimally balances the 

goodness-of-fit and parsimony. Several evaluation criteria have been adopted to assess 

the model performance of competing models or orders. Some common criterion is the 

maximum likelihood ratio test of the models, where a model with the highest log-

likelihood value is the best (Shephard, 1996). Suppose the competing models do not 

have equal parameters. In that case, the principle of parsimony applies, such that the 

best model minimises criterion such as the AIC, BIC, Schwarz information criterion 

(SIC), and the Hannan–Quinn (HQ). The best fit model was determined based on 

parsimony (AIC, BIC, Log-Likelihood criterion) and minimisation of prediction 

production errors (ME and RMAE).  The five metrics are estimated using equations 3.9 

to 3.11 (Zhang Haonan, 2013) 

𝐴𝐼𝐶 = −2 log(𝐿) + 2 log(𝑝 + 𝑞)                                                                           (3.9) 

 

Where 𝐿 indicates the likelihood of the data with a certain model, 𝑝 and 𝑞 indicate the 

lagged orders of AR and MA terms, respectively. 

𝐵𝐼𝐶 =  − 2𝑙𝑜𝑔 (𝐿) +   2(𝑚)                                                                                 (3.10) 

 

Where n and m are the numbers of observations and parameters in the model, 

correspondingly, and log (L) is the log-likelihood. The best model is the one that 

minimizes the AIC or BIC while maximizing the log-likelihood. 

 

3.4.4 Model Evaluation Criterion 

In-sample forecasting ability helps determine the best model to be adopted (Clement, 

2005). These approaches of sample model selection criteria for assessing the predictive 

ability of competing models include the Root Mean Square Error (RMSE) and Theil 

Inequality Coefficient (TIC), Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and Adjusted Mean Absolute Percentage Error (AMAPE). If 𝛿2
𝑡 and  𝛿2

𝑡̂ 

represents the actual and forecasted volatility/variance of a series at time 𝑡, then; MSE, 
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measuring the average of the squared individual errors, is estimated using equation 3.11 

(Poon and Granger, 2003); 

𝑀𝑆𝐸 =
1

ℎ + 1
∑ 𝛿2

𝑡̂ − 𝛿2
𝑡

𝑠+ℎ

𝑡=𝑠

                                                                                 (3.11) 

Where; ℎ is the number of head steps, and s is the sample size. 

 

A model that minimises the MSE value is a better fit for a given data. RMSE is simply 

obtained by taking the square root of MSE and is estimated using equation 3.12: 

𝑅𝑀𝑆𝐸 = √
1

ℎ + 1
∑ 𝛿2

𝑡̂ − 𝛿2
𝑡

𝑠+ℎ

𝑡=𝑠

                                                                            (3.12) 

 

The best asymmetric GARCH model is the one that minimizes the MAE, and RMSE  

 

3.4.5 Residual Diagnostics 

An adequate model for forecasting or, in this case, evaluation of volatility should have 

residuals similar to a series generated from white noise. For simplicity, this can be 

examined by visualization of the residuals in a time plot. A histogram superimposed 

with a density plot was also used to test if the normality assumption holds. For normally 

distributed residuals, the density curve should be bell-shaped. In addition, the residuals 

of a given best model must not be autocorrelated. The Ljung-Box (Q) statistic was 

employed to examine the presence of autocorrelation.  It tests the null hypothesis that 

there is no serial correlation. The insignificant Q statistic implies absence of serial 

correlation; hence the model fits the data well. 

 

Both symmetric and asymmetric curves differ by the leverage effect. Let 𝜀𝑡 be a 

measure of shocks; where a positive value of 𝜀𝑡 depicts a positive shock, and vice versa.  

A standard GARCH model (symmetric) will have a news impact curve that is quadratic, 

that is, symmetric and centred around 𝜀𝑡−1 = 0 (that is; when there is no bad or good 

news). In that case, positive and non-positive shocks of the same magnitude yield a 

similar magnitude of volatility. But conventionally, non-positive shocks can cause 

higher volatility than positive shocks of the same magnitude. Thus, the GARCH model 

underestimates the degree of volatility arising from large negative or bad news/shocks. 
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In the same logic, it overestimates the volatility arising from small positive shocks or 

good news (Engle & Ng, 1993). To examine the tendencies, three diagnostic tests for 

volatility models: The Sign Bias Test (SBT), the Negative Size Bias Test (NSBT), and 

the Positive Size Bias Test (PSBT) are usually carried out. All three tests converge to 

the evaluation of the model misspecification. 

 

However, as Engle & Ng (1993) described, the bias tests have different methodologies. 

The SBT augments an indicator function 𝑆𝑡−1
−  which assumes a rate of one if there is 

negative news (𝜀𝑡−1 < 0) or else zero. It examines whether positive and non-positive 

shocks affect volatility differently from the fitted model. The NSBT employs a dummy 

𝑆𝑡−1
− 𝜀𝑡−1 . It examines if large negative shocks correlate with the volatility contrary to 

the fitted volatility model projection.  On the contrary, the PSBT uses the dummy 

variable 𝑆𝑡−1
+ 𝜀𝑡−1; where 𝑆𝑡−1

+ = 1 − 𝑆𝑡−1
− 𝜀𝑡−1. Unlike the NBST, the PSBT examines 

how larger positive shocks can impact volatility differently from the forecast of the 

fitted conditional heteroscedastic model. 

 

Let 𝑣𝑡 be the normalized residuals at time t of the fitted volatility model 𝑣𝑡 =
𝑒𝑡

√ℎ𝑜
. The 

LM test statistic for 𝐻0: 𝛿𝑎 = 0  in any given asymmetric model entails testing the null 

hypothesis; of 𝐻0: 𝛿𝑎 = 0 in the auxiliary regression equation 3.13. 

𝑣𝑡
2 = 𝑍 0𝑡𝛿 0 + 𝑍 𝑎𝑡𝛿 𝑎 + 𝜇𝑡                                                                                (3.13) 

where; 𝛿 0 is the 𝑘 × 1 direction of parameters of the null hypothesis; 𝑍 0𝑡 is the k x 1 

vector of regressors under the null hypothesis; and 𝑍 𝑎𝑡 is the 𝑚 𝑥 1 direction of 

regressors not included in the model, with associated parameters, 𝛿 𝑎, and 𝜇𝑡 is the 

model residuals. For a perfect or adequate model, the predictors in equation 3.9 should 

be significant. Thus, the conditional heteroscedastic model is misspecified if the fitted 

model predicts the squared standardised residual. The model residuals should show no 

ARCH effects; otherwise, they must be modelled. The Lagrange Multiplier (LM) test 

was used to test for the existence of ARCH, as was used in the study on each of the best 

fit models for both exchange rate and BOP. The LM computed using equation 3.14: 

𝜉𝐿𝑀 =  𝑇 × 𝑅2                                                                                                       (3.14) 
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where; 𝑅2 is square of the multiple correlation coefficient of equation 3.14, and T is the 

sample size. The LM test statistic takes an asymptotic 𝜒2 distribution with m as the 

degrees of freedom, with m denoting the number of restricted parameters. In either case, 

the null hypothesis is that; there are no ARCH effects. Significant test results (p < 0.05) 

support the rejection of the null hypothesis and vice versa. 

 

The regression equations used for evaluation the SBT, the NSBT, and the PSBT are 

presented in equation 3.15.1, 3.15.2, and 3.15.3, respectively. 

𝑣𝑡
2 = 𝛼 + 𝛽 𝑆𝑡−1

− + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡                                                                        (3.15.1) 

𝑣𝑡
2 = 𝛼 + 𝛽 𝑆𝑡−1

− 𝜀𝑡−1 + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡                                                                 (3.15.2) 

𝑣𝑡
2 = 𝛼 + 𝛽 𝑆𝑡−1

+ 𝜀𝑡−1 + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡                                                                (3.15.3) 

 

Where  𝛼 and 𝛽 are parameters of the model, 𝛽′ is a vector of parameters associated 

with the regressors not included in the model, and 𝑒𝑡 is a vector of model residuals.  

The three tests are evaluated based on the t-statistic associated with the coefficient b in 

their respective equations in 3.11. Alternatively, the three tests can be done jointly 

following the regression in equation 3.12  

𝑣𝑡
2 = 𝛼 + 𝛽1𝑆𝑡−1

− + 𝛽2𝑆𝑡−1
− 𝜀𝑡−1 + 𝛽3 𝑆𝑡−1

+ 𝜀𝑡−1 + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡                         (3.16) 

 

The t-statistics proportions for 𝛽1, 𝛽2, and 𝛽3 correspondingly, sign bias, negative, and 

the positive bias test statistics.  It is an expectation that, if adequate volatility, then 𝛽1 =

𝛽1 = 𝛽1 = 0, 𝛽′ = 0; and hence 𝑒𝑡 is 𝑖. 𝑖. 𝑑. If coefficients are significant, the positive 

or negative external shocks affect the variance differently from the model’s predictions. 

On the contrary, there is no bias if the coefficients are insignificant. 

 

3.4.6 Forecasting 

The ultimate goal of time series modelling techniques is to make future forecasts. The 

model that minimises BIC and AIC values was the best fit and used in the forecasting. 

After model selection, a one-step-ahead model forecasting will be done by assuming 

the model parameters are well-known and the innovations have a Gaussian distribution. 

Both the in-sample predictions (observed) and out-sample predictions (unobserved) 

were estimated alongside the one standard deviation confidence band where the actual 
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values are likely to lie. 12-step ahead forecasts from July 2021 to June 2022 were made 

for each variable. 

 

3.5 Ethical Considerations 

The Chuka University Ethics Committee approved the research proposal (Appendix I). 

The research permit was then obtained from NACOSTI before proceeding with the 

research (Appendix II). Where other peoples’ work was used, they were acknowledged 

through citations to avoid plagiarism.  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Trend Analysis of Exchange Rate and BoP Data 

The study aims to apply asymmetric-GARCH models to exchange rate and BoP in 

Kenya using a conditional heteroscedastic class of models. Figure 1 (a) shows Kenya's 

exchange rate data from January 1993 to June 2021. The figure shows an overall 

increasing trend with notable undulation over time. For instance, there was a sharp 

decline around 1992, 2007, and 2012, which can be associated with the usual 

electioneering period associated with election violence which decreases investor 

confidence, especially by the foreigner. The long periods of exchange rate stability are 

seen when there is a smooth government transition. For instance, the periods 2003-

2005; 2017- 2019 had a relatively stable exchange rate. However, the recent 

coronavirus disease 2019 (COVID-19) has seen a sharp appreciation in Kenya’s 

exchange rates.  

 

Figure 1: Time plot of Kenya’s exchange rate and BoP (current account) data 
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The BoPs is a statistical summary statement report showing transactions among citizens 

and non-residents during a given time period.  Figure 1 (b) shows Kenya's monthly 

current account balance in millions of Ksh from August 1998 to June 2021. Overall, 

Kenya's indebtedness seems to widen over time. The counterbalancing of merchandise 

trade (transactions of goods and services), financial service sector and gross primary 

salary (from investments), and net secondary income (from remittances from Kenyans 

in diaspora) is vital in the BoP.  However, the big deficit has been attributed to the 

Merchandise trade, where imports have a higher value than the exported raw materials. 

The key exports are primarily agricultural products, including tea, horticulture, apparel 

and clothing accessories, coffee, and Tobacco. On the contrary, Kenya's import basket 

contains high valued finished or intermediate products comprising industrial 

machinery, petroleum products, iron and steel, road motor vehicles, and medicinal or 

pharmaceutical products. 

 

There was a sharp decreasing trend from 2003 to 2014. The least BoP recorded in 2014 

can be accredited to the decline in foreign exchange incomes from coffee, tea, and 

horticultural commodities. Later in 2016, the BoP slightly rebounded following the 

increased net financial inflows partly accruing from the disbursements to support 

infrastructure projects mainly to the Standard Gauge Railway development project. The 

Kenya National Bureau of Statistics (KNBS) statistical release 2016, indicated that the 

public and publicly guaranteed external debt increased by about 10.4 % from about KSh 

1.550 trillion as of September 2015 to KSh 1.711 trillion in September 2016. In 2017, 

there was another sharp decline in the current accounts' BoPs. The total stock of public 

and publicly guaranteed external debt grew from Ksh. 1.855 trillion in September 2016 

to KSh 2.310 trillion as of September 2017. The growth can be attributed to the 

outstanding syndicated loans disbursed in the first and second quarters of 2017 (KNBS 

statistical release, 2017). Despite an increase in the earnings from domestic exports by 

about 6.3% from KSh 122.4 billion in the third quarter of 2016 (2016Q3) to KSh 130.2 

billion in the third quarter of 2017 (2017Q3), owing to the increased value of tea exports 

from KSh 29.5 to 36.3 billion in the respective periods, among other horticultural 

products, apparel and clothing accessories, the value of imports still outweighs the 

import earnings. In 2017Q3, the imports value grew by about 20.3% from KSh 374.8 

to KSh 450.9 billion in 2016Q3, attributed mainly to heavy imports of sugar, maize, 
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petroleum products, and industrial machinery. For instance, industrial machinery 

imports had the highest proportion of expenditure (13.2% of the total import bill) in 

2017Q3 despite recording a decline of about 8.8% in the same period (KNBS statistical 

release, 2017). Given the overall negative trend, Kenya's ability to meet external 

financial needs continues to sink. Thus, Kenya can only lower the deficit in the BoP by 

shifting to an industrialized economy. 

 

4.2 Stationarity Test 

The use of non-stationary data in time series analysis has always been criticised since 

it leads to spurious results. In the current study, we employed ADF (Augmented 

Dickey-Fuller) test to evaluate the stationarity of the data.  The ADF test tests the 

hypothesis (H0) that data is not stationary versus an alternative hypothesis (H1) which 

states the data is stationary.  The results indicated that the exchange rate data is 

stationary at level, at a 5% level (ADF = -3.845, p = 0.044 < 0.05) (Table 2). 

 

Table 2: ADF test for Exchange Rate Data 

Variable Series ADF 

statistic 

Lag 

order 

p-

value 

Comment 

Exchange 

rate 

At level -3.485 6 0.044 Stationary 

Log differenced -7.555 6 0.010 Stationary 

BoP 
At level -3.342 6 0.065 Not Stationary 

Log differenced -9.175 6 0.010 Stationary 

 

The ADF test results for the BoP data showed that the null hypothesis of non-

stationarity should not be rejected (should be accepted) at a 5% significance level (ADF 

= -3.342, p = 0.065 > 0.05) (Table 13). In contrast, the first difference series was 

stationary at a 5% level (ADF = -8.532, p = 0.01 < 0.05), fitted the study’s asymmetric 

heteroscedastic models led to convergence problems; hence no parameters were 

estimated when fractional differencing as specified in the ARFIMA (p, d, q) model in 

the RUGARCH package in R (R Core Team, 2016).  While the exchange rate data is 

stationary, at level, it has an upward trend. Besides, there was a downward trend in the 

monthly BoPs series over the study period, as shown in Figure 1. To obtain data that is 

stationary, the monthly first difference of the logarithms of the absolute series for 

exchange rate and BoP data were computed using the formula in equation 4.1 

𝐷. log (𝑋𝑡) = ln|𝑋𝑡| − ln |𝑋𝑡−1|                                               (4.1) 
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The resultant series are visualized in Figure 2. The two series are more stationarity than 

their respective mother series depicted in Figure 1.  

 

Figure 2: Time plot of log differenced series for Kenya’s exchange rate and BoP data 

 

4.3 Descriptive Statistics 

Table 3 displays the descriptive statistics and normality test of Kenya's exchange rate 

and current account BoP data and their respective log-differenced series over the study 

period. The skewness statistic for the exchange rate data is close to zero, indicating that 

the data approximately follows a normal distribution.  The negative kurtosis (-0.599) 

suggests that the data is not heavy-tailed; instead, the outliers are less extreme than that 

of a normal distribution (Westfall, 2018). The low-value kurtosis statistic specifies that 

the series is slightly platykurtic. However, the log differenced series of the exchange 

rate data has more interesting properties associated with the stylised facts of the 

financial series. The series mean is close to zero and has excess kurtosis. As a result, 

the study proposed that the asymmetric GARCH model can be more appropriate. 

 

The skewness statistic for Kenya's current account BoP is –0.236, signifying that the 

lower tail of the distribution is slightly thicker than the right tail. The negative excess 

kurtosis (-1.416) suggests that the data is not heavy-tailed and that hence the outliers 

are less extreme than that of a standard distribution (Westfall, 2018). Like the log-

differenced series of Kenya's exchange rate, the log-differenced series of Kenya's BoP 
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data is heavy-tailed (Kurtosis = 9.541) compared to its parent series (-1.416). Thus, the 

log-differenced series in each case will be studied.  

 

Table 3: Descriptive statistics and normality test 

 

Descriptive Statistics 

Shapiro-Wilk test 

(SW) 

N Min Max Mean SD Skewness Kurtosis Statistic p-value 

Exchange Rate 342 35.92 110.14 79.26 16.49 0.000 -0.599 0.967 0.000 

D.log (EXCHR) 341 -0.151 0.274 0.0332 0.0332 2.432 24.841 0.7014 0.000 

BoP  275 -11,9462.7 -2,175.2 -49,244.1 35,629.9 -0.236 -1.416 0.904 0.000 

D.log (BoP)  274 -2.02 1.33 0.0102 0.329  -0.411 9.541 0.923 0.000 

Note. EXCHR is the exchange rate 

 

One of the important features in fitting GARCH type models is the normality 

assumption. As statistically quantified by Shapiro-Wilk's (SW) test indicates that all the 

series are not normally distributed (all p < 0.05).  The histograms in Figure 3 indicates 

that the series slightly deviated from normal. Given that the data doesn’t follow a 

standard distribution, mainly caused by the flatter tail than those of a normal 

distribution, it is necessary to use non-normal distributions, for instance, the student t-

distribution (std), GED, and skewed student distribution ("sstd") or skewed normal 

distribution (snorm) (Baillie & Bollerslev, 1989; Bollerslev, 1987; Beine et al., 2002). 

Given that the data slightly deviates from normal, the current study adopted the snorm 

when fitting all the potential asymmetry GARCH models for the log-differenced series 

of Kenya's exchange rate and BoP data. 



46 

 

 
Figure 3: Histogram of log-differenced series of Kenya's exchange rate and BoP data. 

 

4.4 Testing for ARCH Effects 

The GARCH type model is an extension of the ARCH-type models. The GARCH (p, 

q) model points towards the ARCH (r = q + p) model. Thus, the preliminary stage to 

fitting the model entails testing for the existence of ARCH effects. The Lagrange 

Multiplier (LM) test was employed to examine the existence of ARCH effects on the 

squared residuals of the AR (p) model. The null hypothesis state that there is no 

presence of ARCH properties. Table 4 displays the test results. 

 

Table 4: Arch effects test for the log-differenced series of exchange rate and the BoP 

data 

Series N Ch-Square Degree of freedom p-value 

D.log (EXCHR) 342 73.86 12 0.000 

D.log (BoP) 275 100.5 12 0.000 

 

Regarding the log-differenced series of exchange rates, the resultant LM statistic at 12 

degrees of freedom is 73.86 with an associated p-value less than 0.01. Therefore, the 

null hypothesis (H0) should not be accepted (rejected) at a 1% level of significance, 

indicating strong evidence of the existence of ARCH effects. The LM was also applied 

to test for the existence of the ARCH effect on the squared errors of an AR (p) process. 
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The resultant LM test results indicate that the H0 is to be rejected at a 1% significance 

level (Chi-squared (12) = 100.5, p < 0.01), supporting the presence of ARCH effects in 

the series. The findings justify the use of the GARCH type models in both series. On 

the same note, the GARCH (Bollerslev, 1986) is an extension of the ARCH family, 

where  𝜎𝑡
2 It depends on the lags and lags of the squared error term. The GARCH model 

is an Autoregressive Distributed Lag (ADL) (p, q) model hence likely to provide more 

parsimonious parameterisations than the ARCH model. 

 

4.5 Model Selection and Specification 

4.5.1 Mean equation Selection 

The mean equation in asymmetric GARCH models is an ARMA process. The mean 

equation selection for the log differenced series of exchange rates and BoP data are 

discussed concurrently.  

 

4.5.1.1 Exchange Rates  

One of the visualisation tools that help examine the presence of autocorrelation in time 

series data is ACF; as shown in Figure 5, there is a significant autocorrelation 

coefficient with some seasonality, which repeats itself after some interval k. 

 
Figure 4: ACF of log differenced series of Kenya’s exchange rate data 

 

Figure 4 shows the log differenced series of exchange rate data alongside its 

decomposed time-series properties and ascertains that the series has seasonality. 
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Figure 5: Time series decomposition of log-differenced series of exchange rates 

 

One of the notable challenges with modelling with the ugarchspec function in the 

Rugarch package in R (R Core Team, 2016) is that it does not account for the 

seasonality aspect in the ARMA mean equation model.  Based on the minimisation of 

AIC, and BIC values the 𝑎𝑢𝑡𝑜. 𝑎𝑟𝑖𝑚𝑎 function in the 𝑓𝑝𝑝2 package in R suggests that 

ARIMA (4,0,0) (2,0,0) [12] with non-zero mean could be the best Seasonal ARIMA 

(SARIMA) model (AIC = -1385.34, BIC = -1354.68). The model shows that the mean 

equation model should capture seasonality. Yet, the RUGARCH package does not 

account for seasonality in the asymmetric modelling producer. The seasonal argument 

was set to False to account for seasonality assuming the series has no seasonal 

component to incorporate the Fourier terms in the model, as in Andersen and Bollerslev 

(1997). The resultant models incorporate the ARMA and Fourier terms as external 

regressors. K was specified as from 1 to 6 since K should not be greater than period/2. 

Given that the periodicity of the series is 12; 1 ≤ 𝑘 < 6. All the ks favoured ARIMA 

(3,0,0). Therefore, the mean equation in the ugarchspec function in the Rugarch 

package will be ARMA (3,0). Besides, the best fit GARCH had the parameters p and q 

as one. The optimal ARMA (3,0) is akin to AR (3) process, indicating autocorrelation 

in the series. 
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4.5.1.2 Balance of Payment (BoP) 

Similarly, the ACF of the log difference series of BoP shows some significant 

autocorrelation coefficients that tend to repeat after some interval. The behaviour of the 

ACF suggests that a SARIMA process best fit the series.  

 
Figure 6: ACF plot of log-differenced series of BoP data 

 

Figure 6 shows the log differenced series of BoP rate data alongside has seasonality. 

The best SARIMA model ascertains the feature to the data specified as ARIMA (4,0,0) 

(2,0,0) [12] with a non-zero mean (AIC = 33.7, BIC =62.61). Thus, it is vital to account 

for such seasonality using Fourier terms to identify an ARMA mean equation. 
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Figure 7: Time series decomposition of log-differenced series of BoP data 

 

Table 5 shows the mean equation model selection for the log-differenced series of BoP 

data. The two ARIMA (p, q) models have a balanced preferential. For instance, ARMA 

(0,3) is favoured by the AIC (20.65) with a k of 4. Yet, ARMA (1,1) is preferred by the 

BIC (46.11), and AIC corrected (AICc) (21.87) with a k of 1 and 3, respectively. Thus, 

both mean equations were used, and the best-fit equation was determined based on the 

resultant model's performance. 

 

Table 5: Mean equation model selection by incorporation of Fourier terms 

k Model Constant AIC AICc BIC 

1 ARIMA (1,0,1) 24.7456 24.43 24.75 46.11 

2 ARIMA (0,0,3) 26.4645 25.78 26.46 58.3 

3 ARIMA (1,0,1) 21.8689 21.03 21.87 57.16 

4 ARIMA (0,0,3) 22.0508 20.65 22.05 67.62 

5 ARIMA (0,0,3) 23.1414 21.28 23.14 75.48 

6 ARIMA (1,0,1) 23.5359 21.68 23.54 75.87 

Note. All the Mean equation models had non-zero mean indicated by the constant; 

AICc = AIC corrected 
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4.5.2 GARCH Model Selection 

4.5.2.1 Exchange Rates 

Table 6 presents possible ARIMA (3, 0) – GARCH (1, 1) models for the log-differenced 

series of exchange rate data alongside their evaluation metrics (AIC and BIC). The 

optimal variance equation based on the minimization of the two metrics was APARCH 

(1,1) - ARMA (3,0) model with a skewed normal distribution (AIC = -4.6871, BIC = -

4.5860). 

 

Table 6: Model Selection for the log-differenced series of exchange rate data 

GARCH Model Mean Model AIC BIC LL ME RMAE 

EGARCH (1,1) ARMA (3,0) -4.4492 -4.3593 766.5814 -0.0006 0.1304 

IGARCH (1,1) ARMA (3,0) -4.6394 -4.5720 797.0147 0.0034 0.1334 

APARCH (1,1) ARMA (3,0) -4.6871 -4.5860 808.1503 0.0020 0.1340 

TGARCH (1,1) ARMA (3,0) -4.1037 -4.0138 707.6726 -0.0055 0.1422 

GJR-GARCH (1,1) ARMA (3,0) -4.6285 -4.5386 797.1539 0.0029 0.1290 

 

The findings differ from those of Petrică and Stancu (2017), who established that AR 

(3) - EGARCH (2, 1) was the best model fit to the best model for estimating daily 

returns of EUR/RON exchange rate.  While the mean equation is similar, the GARCH 

model is different. The findings can be associated with methodological disparity. The 

current study specified a skewed normal distribution, unlike Petrică and Stancu (2017), 

who preferred students' t-distribution (AIC ≈ 0.7880). Apart from using a different 

reference currency, the frequency of the series was high (daily EUR/RON exchange 

rates) and spanned 4th January 1999 to 13th June 2016. Unlike their study, the current 

study used monthly KES/USD exchange rates which portrayed different time-series 

properties. In the current study, ARMA (3,0) - APARCH (1,1) is the best fit model 

since APARCH of Ding et al. (1993) accounts for leverage and the Taylor effect 

(Taylor, 1986), which postulates that the observed that the sample autocorrelation of 

absolute returns was larger than from squared returns. 

 

Table 7 summarizes the optimal parameters for the best model ARMA (3,0). - 

APARCH (1,1). While determining the optimal order, 𝜔 was fixed to 0.000020 and 

was determined based on automatic optimization of the parameter based on the 

garchFit () function in the Rugarch package (R Core Team, 2020).  From the results, 

𝜙3 of the AR (3) mean equation process is -0.151835 and is statistically significant (p 

= 0.000), indicating a negative autocorrelation. Aggregately, the three AR parameters 
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suggest that the exchange rate is characterized mainly by trends, as indicated in the 

decomposition of the series in Figure 5. As shown in Figure 4, the log differenced series 

of exchange rate data has a decreasing trend component. 

 

Table 7: Optimal Parameters 

Parameter  Estimate Std. Error t value p-value 

mu       0.001532 0.00089 1.710710 0.087135 

AR1       0.072017 0.076051 0.946951 0.343664 

AR2 -0.043664 0.065509 -0.666541 0.505065 

AR3 -0.151835 0.042632 -3.561516 0.000369 

Omega (fixed)  0.000020    

alpha1 0.649600 0.133069 4.881666 0.000001 

beta1    0.206667 0.077380 2.670788 0.007567 

eta11    -0.000005 0.071421 -0.000065 0.999948 

Lambda 2.475383 0.051397 48.162375 0.000000 

skew      1.128859 0.051947 21.731141 0.000000 

Note. restricted Variance Dynamics: GARCH Model: APARCH (1,1); Mean Model: 

ARMA (3,0); Distribution: snorm 

 

Algebraically, the square residuals models can be represented as follows: 

𝜎𝑡
2 = 0.000020 + 0.0720𝑋𝑡−1 − 0.0437𝑋𝑡−2 − 0.15184𝑋𝑡−3 + 0.6496 |𝜖𝑡−1|

+ 0.2067 𝜎𝑡−1
2 − 0.000005𝑣𝑗1 + 2.47538 𝜖𝑡−1 

The GARCH parameters were approximated to be 𝛼1= 0.6496, 𝛽1=0.2067, 𝜂11 =

−0.000005, λ = 2.4754.  

 

A key stylized fact of financial time series data that GARCH models capture is volatility 

clustering. The persistence parameter captures the feature 𝑃̂. For the APARCH model, 

the persistence model is estimated using equation 4.3 

𝑃̅  = ∑ 𝛽𝑗

𝑃

𝑗=1

 +  ∑ 𝛼𝑗𝑘𝑗

𝑞

𝑘=1

                                                  (4.3) 

Given that 𝛼1 and 𝛽1 is statistically significant at a 1% level (p < 0.01), there is a 

persistent volatility clustering in the series. Regarding volatility persistence, the 

research findings revealed a small value of the persistence parameter (𝛽) hence a rapid 

decrease of the increase in the conditional variance due to shocks. 

 

Besides, the significance of λ = 2.4754 > 0 at a 1% significance level (SE = 0.051397; 

p < 0.01) suggest presence of a statistically significant leverage effect. The leverage 
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effect is a common feature in financial time series, where large negative past 

observations of 𝛼𝑡 increases volatility more than positive past observations of a similar 

magnitude.  The non-zero leverage parameters ascertain the presence of asymmetry in 

the exchange rate series. Conventionally, negative leverage parameters indicate an 

asymmetric reaction for positive returns in the conditional variance equation. In 

contrast, positive leverage parameters indicate that negative shocks or bad news 

increase volatility (Petrică & Stancu, 2017). 

 

Thus, the resultant positive coefficient of 𝜆 (positive asymmetry) shows the absence of 

leverage result in the exchange rate series. Instead, volatility is positively correlated 

with the series. In the current finding, positive shocks on the exchange rate generate 

higher volatility than negative shocks of equal magnitude; other factors are kept 

constant. Despite inconsistent results with theory, there is always possible that 

empirical evidence deviates from the theoretical perspective. For instance, while 

modelling volatility or return series Nigerian, Onwukwe, Bassey & Isaac (2011) found 

a positive coefficient of 𝜆 in the UBA, Mobil, and Unilever returns with returns for the 

Guinness stock prices only indicating the presence of leverage effect.  In another study, 

BENEDICT (2013) demonstrated the absence of the leverage effect in Ghana’s monthly 

inflation. The study of Nwoye (2017) also revealed the presence of volatility clustering, 

leverage effect, and asymmetric effect in the Nigeria’s Exchange rate against the USD 

spanning January 1999 to December 2012, though using the EGARCH (2,2) as the best 

fit model. Petrică & Stancu (2017) also found the presence of positive and negative 

asymmetry in the returns of EUR/RON exchange rate while using the AR (3) - 

EGARCH (2, 1) model. 

 

Besides, Pahlavani & Roshan (2015) found a positive leverage effect in the exchange 

rate of Iran (IRR/USD) using that ARIMA (7,2), (12) – EGARCH (2,1) was the best fit 

model. Contrarily, Thorlie, Song, Wang, & Amin (2014) found negative asymmetry in 

the Sierra Leone/USA dollars exchange rate returns computed from the monthly data 

from January 2004 to December 2013 while using asymmetric GJR-GARCH models. 

In Kenya, Omari, Mwita, & Waititu (2017) found asymmetry and presence of negative 

leverage effect in Kenya’s daily exchange rates spanning 3rd January 2003 to 31st 
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December 2015 while using the AR (2)-E-GARCH (1, 1) and AR (2)-GJR-GARCH (1, 

1).  The findings vary due to the different time frames used to estimate volatility.  

 

4.5.2.2 Balance of Payments 

Having determined that two mean equations can best fit model the log differenced series 

for BoP data, the next stage best fit GARCH had the parameters p and q Table 8 presents 

a combination of several ARIMA (p, q) – GARCH (p, q) models alongside their 

evaluation metrics (AIC and BIC). The optimal variance equation based on the 

minimization of the two metrics was ARMA (1,1) - IGARCH (1,1) model estimated 

assuming a skewed normal distribution (AIC = -0.14475, BIC = -0.07882). 

 

Table 8: Model Selection for the log-differenced series of BoP data 

GARCH Model Mean Model AIC BIC HQ LL ME RMAE 

EGARCH (1,1) ARMA (0,3) -0.126487 -0.020994 -0.084145 25.3287 0.002181 0.425351 

EGARCH (1,1) ARMA (1,1) -0.12188 -0.02958 -0.08483 23.69797 0.002107 0.426163 

IGARCH (1,1) ARMA (0,3) -0.12911 -0.04998 -0.09735 23.68753 0.002115 0.425377 

IGARCH (1,1) ARMA (1,1) -0.14475 -0.07882 -0.11829 24.83077 0.001885 0.426304 

APARCH (1,1) ARMA (0,3) -0.12934 -0.01066 -0.08171 26.71969 0.002008 0.425542 

APARCH (1,1) ARMA (1,1) -0.12692 -0.02143 -0.08458 25.3878 0.001856 0.426319 

TGARCH (1,1) ARMA (0,3) -0.13203 -0.02653 -0.08968 26.08743 0.002134 0.425515 

TGARCH (1,1) ARMA (1,1) -0.12742 -0.03512 -0.09037 24.45693 0.001991 0.426302 

GJR-GARCH (1,1) ARMA (0,3) -0.13602 -0.03053 -0.09368 26.63447 0.002001 0.425528 

GJR-GARCH (1,1) ARMA (1,1) -0.13420 -0.04190 -0.09715 25.38583 0.001854 0.426322 

 

Table 9 summarizes the optimal parameters for the ARMA (1,1)- IGARCH model. Like 

when estimating the best fit model for the exchange rate data, the optimal parameter, 𝜇 

was fixed to 0.009617 determined based on automatic optimization of the parameter 

based on the garchFit() function in the Rugarch package (R Core Team, 2020).  

 

Table 9: Optimal Parameters 

Parameter  Estimate Std. Error t value p-value 

mu (fixed)  0.00962    

AR1       -0.1196 0.0870 -1.3746 0.1692 

MA1 -0.6576 0.0702 -9.3671 0.0000 

Omega 0.0002 0.0005 0.3779 0.7055 

alpha1 0.0881 0.0515 1.7094 0.0874 

beta1    0.9119 NA NA NA 

skew      0.7379 0.0654 11.2865 0.0000 

Note. Conditional Variance Dynamics: IGARCH Model: IGARCH (1,1); Mean 

Model: ARMA (1,1); Distribution: ger 



55 

 

Algebraically, the square residuals of ARMA (1,1) - IGARCH (1,1) can be represented 

in equation as follows. 

 

𝜎𝑡
2 = 0.000195 − 0.11959Xt−1  − 0.657601Xt−1 + 0.0881εt−1

2 +  0.9119σt−1
2  

The inclusion of AR (p) process parameters indicates the presence of negative 

autocorrelation in the series. The maximum specification of one lag in the 

Autoregressive part of the mean model shows that the BoP is characterized mainly by 

trends. As indicated in Figure 7, the BoP has a decreasing trend. The GARCH 

parameters were approximated to be 𝛼 = 0.0881, 𝛽 = 0.9119. The conditional variance 

parameters are not statistically significant at a 1% level (associated p-values > 0.05), 

indicating the absence of (persistent) volatility clustering in the series. Unlike in the log 

differenced exchange rate series in Figure 5, the log differenced series shows three 

clusters prior to 2007 and after that depicts a constant (mean) and variance over time. 

Thus, the IGARCH model is well suited due to its parametrization algorithms. The 

IGARCH model assumes that the persistence parameter 𝑃̅ is one and is thus imposed 

during the estimation procedure such that unitary persistence other unconditional 

variance parameters are not computed (Engle & Bollerslev, 1986). As such, the absence 

of the leverage parameter indicates that BoP does not depict the leverage effect. 

 

 BoP can be seen as an aggregate measure of international flows in a country. Its growth 

or changes seem to be additive over time since it has so many parameters. Good or bad 

news in one sector, such as the goods market, might be alleviated by stability in another 

sector, such as the service sector. Contrarily, exchange rates seem unilateral, and one 

external shock such as wars or sanctions can cause an immediate shock in the exchange 

rate. Such shocks tend to recur after some interval, such as the electioneering period in 

Kenya, hence the clustering effect. Therefore, BoP can only display multiplicative or 

additive trend parameters over time with less clustering. Figure 1 (b) shows that BoP 

data has a multiplicative decreasing trend with no significant clusters. 

 

4.6 Residual Diagnostics 

The adequacy of any fitted model is examined to detect any misspecification error. The 

current study tested whether residuals from the best fit model for the exchange rate data 

meet the normality assumption, show no serial association, and have no ARCH 
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properties. The key aim is to examine whether the model minimizes the prediction 

errors. 

 

4.6.1 Exchange rates 

Figure 8 shows the graph of the residuals from the ARMA (3,0)- APARCH (1,1) 

alongside the histogram. It shows clear evidence that the residuals {𝜖𝑡} mimics a 

Gaussian white noise.  

 

Figure 8: Plot Residuals (left) from ARMA (3,0) -APARCH (1,1) model alongside an 

Empirical Density of Standardized Residuals.  

 

Besides, there are few significant autocorrelation coefficients in the resultant model 

residuals, as depicted in Figure 9. 
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Figure 9: ACF plot of residuals from ARMA (3,0) -APARCH (1,1) model 

 

In a different statistical language, the residuals from the fitted model are purely random; 

hence the model is adequate. However, randomness is not the only necessary condition 

that must be satisfied.  The residuals of an adequate model should not be autocorrelated. 

The Ljung–Box test was applied to the model residuals and the squared errors of the 

best fit ARMA (3,0) -APARCH (1,1) model for Kenya’s exchange rate series. It tests 

the H0 of no serial association. In both cases, the Ljung–Box tests results indicated 

significant results (all p – values < 0.05) for all lags, evidence of the presence of serial 

correlation (Table 10).  However, as shown by the ACF plot in Figure 9, there are few 

significant autocorrelation coefficients in the resultant model residuals hence has no 

serious implication in the fitted GARCH model. 

 

Table 10: Weighted Ljung-Box Test 

 Standardized 

Residuals 

Standardized Squared Residuals 

 statistic p-value statistic p-value 

Lag [1] 14.81 0.000 17.50 0.000 

Lag[2*(p+q)+(p+q)-

1][8] 

24.30 0.000 17.87 0.000 

Lag[4*(p+q)+(p+q)-

1][14]  

29.29 0.000 19.20 0.000 

Note. degrees of freedom = 3 
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Furthermore, it is also an expectation that ARCH-LM test results are non-significant. 

The LM test examines the H0 that “there are no ARCH effects.” The results in Table 

11 show the absence of ARCH effects in the model residuals (all p-values > 0.05). Thus, 

the finding indicates that the fitted ARCH process was adequate. 

 

Table 11: Weighted ARCH LM Tests 

 Statistic Shape Scale P-Value 

ARCH Lag [3] 0.2487 0.500 2.000 0.6180 

ARCH Lag [5] 0.5832 1.440 1.667 0.8588 

ARCH Lag [7] 0.8014 2.315 1.543 0.9436 

 

The SBT, the NSBT, and the PSBT are usually carried out to evaluate the volatility 

model misspecification. Overall, the SB test evaluates the existence of leverage effects 

in the standardized residuals (to address the possibility of model misspecification) by 

predicting the squared standardized residuals based on lagged negative and positive 

shocks (Engle and Ng, 1993). Thus, it tests whether positive and negative shocks affect 

volatility differently from the fitted conditional heteroscedastic model. The NSBT 

examines if large negative shocks correlate with the volatility contrary to the fitted 

volatility model projection.  On the contrary, the PSBT examines how larger positive 

shocks are associated with large biases in forecasted volatility. Hypothetically, the 

residuals are said to be 𝑖. 𝑖. 𝑑 because the model parameters ({𝛽𝑖 , 𝛽′) in equations 3.11 

and 3.12 are insignificant; hence the model is correctly specified. The fitted model SB 

and NSB tests are non-significant. However, the PSB is significant and, therefore, the 

joint effect at a 1% significance level (all p-values < 0.01) (Table 12). Thus, the squared 

residuals' significant positive reaction to shocks. Yet, the APARCH model has been 

designed to alleviate such biases (Ghalanos, 2022).  

 

Table 12: Sign Bias Test 

 t-value p-value Significance 

Sign Bias            0.6441 0.052 Not Significant 

Negative Sign Bias   0.1416 0.089 Not Significant 

Positive Sign Bias   5.0158 0.000 Significant 

Joint Effect         26.6334 0.000 Significant 

 



59 

 

4.6.2 Balance of Payment 

Figure 10 depicts the residuals from ARMA (1,1) – IGARCH (1,1) alongside the 

histogram. It is evident that the residuals {𝜖𝑡} mimics a Gaussian white noise.  

 
Figure 10: Plot Residuals (left) from ARMA (1,1) – IGARCH (1,1) model alongside an 

Empirical Density of Standardized Residuals.  

 

Besides, there are few significant autocorrelation coefficients in the resultant model 

residuals, as depicted in Figure 9. 

 
Figure 11: ACF plot of residuals from ARMA (1,1) -IGARCH (1,1) model 

 

The Ljung–Box test was applied to the standardized squared residuals to test for serial 

association. In both cases, the test results were insignificant (all p – values > 0.05) for 
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all lags included. The finding implies that there is no serial association; hence the model 

fits data well (Table 13).  

 

Table 13: Weighted Ljung-Box Test 

 Standardized Squared Residuals 

statistic p-value 

𝐿𝑎𝑔 [1] 1.098 0.2947 

𝐿𝑎𝑔[2 ∗ (𝑝 + 𝑞) + (𝑝 + 𝑞) − 1][5] 2.613 0.4823 

𝐿𝑎𝑔[4 ∗ (𝑝 + 𝑞) + (𝑝 + 𝑞) − 1][9]  4.010 0.5871 

Note. degrees of freedom = 2 

 

The third diagnostic test on the model residuals was examining for ARCH properties. 

The LM test examination showed that the H0 that “there are no ARCH effects” should 

not be rejected (all p-values > 0.05) at each lag order. Thus, the results provide 

sufficient evidence of the absence of ARCH properties in the errors (Table 14). 

 

Table 14: Weighted ARCH LM Tests 

 Statistic Shape Scale P-Value 

ARCH Lag [3] 0.1337 0.500 2.000 0.7147 

ARCH Lag [5] 1.9515 1.440 1.667 0.4821 

ARCH Lag [7] 2.6837 2.315 1.543 0.5752 

 

The SB test on the ARMA (3,0) - IGARCH (1,1) model fitted to exchange rate supports 

the nullity of negative and positive signs. However, there is a significant sign bias and 

joint effect at a 5% level (all p-values > 0.05) (Table 15). The evidence of sign bias 

indicates that the model can suffer from misspecification. However, the model is 

adequate as supported by the ARCH-LM test; hence can describe the volatility trends 

of the series. Besides, the model identified the absence of volatility clustering and 

leverage effect in the BoP series. In any case, there is no positive or negative bias. 

 

Table 15: Sign Bias Test 

 t-value p-value Significance 

Sign Bias            2.4988 0.0131 Significant 

Negative Sign Bias   0.0228 0.9818 Non-significant 

Positive Sign Bias   1.5443 0.1237 Non-significant 

Joint Effect         8.2911 0.0404 Significant  
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4.7 Estimating Volatilities 

4.7.1 Exchange Rates 

While the ARMA (3,0)-APARCH (1,1) model fitted to the log differenced exchange 

rate data fails the positive sign bias test, the model is adequately supported by the 

ARCH-LM test; hence can describe the volatility trends of the series. The in-sample 

volatilities were estimated as graphically presented in Figure 12. Overall, Kenya’s 

exchange rate volatility appears to be converging over time, indicating sustained 

exchange rate stability.  The GARCH 𝛼 and 𝛽 parameters fitted ARMA (3,0) -

APARCH (1,1) model were statistically significant at a 1% level (p < 0.01), indicating 

a persistent volatility clustering in the series with rapid decelerating growth over time. 

 

The first period depicts some notable occasions where volatility was high. The periods 

between 1993/94, 1995-1997, 2001/02, 2005/06, 2008/09, 2011-2013, and 2015/17 

experienced high volatility and are associated with the electioneering period, which 

causes an incentive to both foreign and domestic investors due to uncertainty of the 

election outcome and likelihood of associated violence and disruption of business 

activities as witnessed in the aftermath of the 2007 elections. Besides, the higher 

volatility during 2008/09 can also be associated with the global financial crisis. The 

recent COVID-19 has also seen a sudden spike in the exchange rate volatility. 

 

Figure 12: Estimate Exchange Rate Volatilities by ARIMA (3,0)-APARCH (1,1) 
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4.7.2 Balance of Payments 

Given that the model residuals satisfy the post-diagnostic tests; the in-sample 

volatilities were estimated as graphically presented in Figure 13. Overall, Kenya's BoP 

volatility appears to be converging over time, indicating that the BoP has relatively 

stabilised over the past few decades. The volatility was relatively stable but still high 

before 2012. However, in 2011 volatility sharply rose and has since then remained high. 

The years 2014 and 2016 also recorded peaks in BoP volatility. Overall, from 2012 to 

2019, had huge investments in the infrastructural investments in roads and railway 

transport. In addition, the BoP volatility significantly dropped towards the end of 2019 

to mid of 2020. 

 

Figure 13: Estimated Kenya's BoP Volatilities by ARIMA (1,1)-IGARCH (1,1) 

 

The sharp fall can be attributed to the global COVID-19 pandemic. The pandemic saw 

a restriction on international travel and merchandise trade. Besides, the high volatility 

can be attributed to Kenya's export and import basked composition. On one end, 

Kenya's import basket comprises highly valued finished or intermediate products such 

as electronics, industrial machinery, and road motor vehicles that keep appreciating 

over time. A change in lifestyle among Kenya's citizens towards materialism has seen 

a heavy influx of expensive automobiles and electronic devices. Yet, on the other end, 
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the export basket comprises low-valued agricultural products, including tea, 

horticulture, apparel and clothing accessories, coffee, and Tobacco which are seasonal. 

 

4.8 Forecasting 

The ultimate in time series modelling is to make forecasts. The next sections present in 

and out-sample estimates of the exchange rate and BoP series log differenced series 

using their respective best fit model. 

 

4.8.1 Exchange Rates 

The ARMA (3,0) -APARCH (1,1) model satisfied the model adequacy test making it 

an appropriate forecasting model. First, an in-sample examination was evaluated where 

the actual values were superimposed with the estimated one standard deviation from 

the ARIMA (3,0)-APARCH (1,1) model (Figure 14). The confidence bands portray a 

similar series’ pattern over time, providing reliable future forecasts. 

 

Figure 14: Actual Exchange rate values superimposed with one standard deviation 

confidence band estimated from ARIMA (3,0)-APARCH (1,1) 

 

Figure 15 plots Kenya's log differenced exchange rates data from Jan 1993 to June 2021 

with a 12-month step ahead of July 2021 to June 2022. The 99% confidence limits for 

the forecasts to account for volatility are included. 
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Figure 15: Log differenced exchange rates (Jan 1992 – June 2021) with a 12-month 

step ahead forecast with unconditional 1-sigma confidence bands. 

 

The model predicts Kenya's exchange rate to remain relatively constant from July to 

June 2022. However, the volatility is increasing over time, as shown by the funnelled 

shape confident yellow band forecast limits widening out (Figure 15) due to increasing 

or diverging conditional standard deviation (𝜎) over time (Table 16). Thus, while the 

exchange rate can be somewhat stable and the diverging prediction intervals indicate 

that it is susceptible to future external shocks, which can either continue to weaken or 

strengthen it.  

 

Table 16: GARCH Model Forecast 

Forecast Period Forecasted Series Sigma (Volatility) 

T+1 July 2021 0.004329 0.01411 

T+2 August 2021 0.002280 0.01773 

T+3 September 2021 0.001330 0.02050 

T+4 October 2021 0.001060 0.02280 

T+5 November 2021 0.001393 0.02479 

T+6 December 2021 0.001573 0.02658 

T+7 January 2022 0.001613 0.02820 

T+8 February 2022 0.001557 0.02969 

T+9 March 2022 0.001524 0.03108 

T+10 April 2022 0.001518 0.03238 

T+11 May 2022 0.001527 0.03360 

T+12 June 2022 0.001533 0.03477 

Note. Forecast: T0=Jun 2021 
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4.8.2 Balance of Payments Data 

The ARMA (1,1) - IGACRH (1,1) satisfied the diagnostic criteria of model parameter 

optimization and distribution of the model residuals. Forecasts can either consist of in-

sample or out-of-sample forecasts. The in-sample estimates are commonly used to 

approximate the forecasted residuals hence model parameter selection. That is, 

parameters that minimise the in-sample prediction errors proxied by metrics such as 

AIC or BIC are optimal. A good way to visualize how a model minimizes the prediction 

errors is to superimpose the actual values with the estimated one standard deviation 

confidence limits from the fitted model, as illustrated in Figure 16. The confidence 

bands portray a similar pattern of the series over time with narrower gaps, given the 

scale of the data. Thus, the model is assumed to provide reliable forecasts. 

 
Figure 16: Actual BoP superimposed with one standard deviation confidence band 

estimated from ARMA (1,1)-IGARCH (1,1) 

 

The out-sample forecasts can be done on both observed (resulting from splitting the 

data into a set) or unobserved (future estimates). The current study estimated the 

parameters using the entire sampled data points. Figure 17 plots Kenya's BoPs data 

from August 1998 to June 2021 with a 12-month step ahead of July 2021 to June 2022. 

The 99% confidence limits for the forecasts to account for volatility are included. 
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Figure 17: Actual balance of payment (Aug 1998 – June 2021) with a 12-month step 

ahead forecast with unconditional 1-sigma confidence bands. 

 

The ARMA (1,1) - IGACRH (1,1) model predicted that Kenya's deficit in BoP is likely 

to remain relatively constant from December 2021 to June 2022. Besides, as measured 

by the restricted standard deviation (𝜎), the volatility is slightly decreasing but 

relatively constant over the same out-sample forecast period (Table 17), as shown by 

the rectangular shape confident yellow band forecast limits in Figure 17. The 

predictions are attributed to the findings that BoP has less volatility clustering than 

exchange rates which has significant volatility clustering. The trend can be attributed 

to the industrialization agenda of the government that was launched in 2017 and 

subsequent infrastructural investments in roads and railway transport.  
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Table 17: GARCH Model Forecast 

Forecast Period Forecasted Series 

(Log differenced 

series) 

Sigma  

(Volatility) 

T+1 July 2021 0.016958 0.1426 

T+2 August 2021 0.008739 0.1433 

T+3 September 2021 0.009722 0.1439 

T+4 October 2021 0.009605 0.1446 

T+5 November 2021 0.009619 0.1453 

T+6 December 2021 0.009617 0.1460 

T+7 January 2022 0.009617 0.1466 

T+8 February 2022 0.009617 0.1473 

T+9 March 2022 0.009617 0.1479 

T+10 April 2022 0.009617 0.1486 

T+11 May 2022 0.009617 0.1493 

T+12 June 2022 0.009617 0.1499 

Note. Forecast: T0=Jun 2021 
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CHAPTER FIVE 

SUMMARY, CONCLUSION, AND RECOMMENDATION 

5.1 Summary 

Volatility models are vital in the field of economics and funding. Estimating and 

forecasting volatility help make investment decisions, stock valuation, and financial or 

monetary policymaking. Linear time series models are not effective for explaining the 

features of a volatility series as they assume the existence of linear dependence in given 

series. Besides, most time-series data usually display volatility clustering resulting in 

the violation of the homoscedastic assumption of the equality of variance over time. 

Therefore, volatility models such as the symmetric and asymmetric-GARCH type 

models have been proposed as suitable models. The symmetric-GARCH models have 

several shortcomings. For instance, they fail to model the leverage effect in a situation 

when an unanticipated reduction in prices increases predictable volatility more than an 

unanticipated increase in prices of similar magnitude. Besides, the symmetric GARCH 

models do not capture the thick tails property of higher-frequency data. More 

importantly, the symmetric GARCH models have been criticized since the conditional 

variance only relies on the magnitude of change, assuming that past positive and 

negative changes affect the current volatility. Since the conditional variance must be 

non-negative, the parameters are often constrained to be non-negative, which may not 

hold when modelling the time series data. As a result, asymmetric-GARCH type models 

have been favoured since they tolerate asymmetric effects of positive and negative 

innovation (Hafner & Linton, 2017). Therefore, the current study evaluated how 

asymmetric-GARCH type models (EGARCH, GJR-GARCH, APARCH, TGARCH, 

and IGARCH models) fit Kenya’s exchange rate and BoP data. 

 

The study used the available monthly exchange rates data in Kenya from January 1993 

to June 2021 as a convenience sample. The sampled data had 342 data points considered 

adequate for a time series analysis technique. The available monthly balance of 

payment dataset spanned between August 1998 to June 2021. The study's two 

secondary data sets were extracted from the Central Bank of Kenya website. 

 

Kenya's exchange rate data trend analysis showed an overall increasing trend. The 

electioneering period, for instance, around 1992, 2007, and 2012 have been associated 
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with a sharp appreciation due to decreased investor confidence, especially by the 

foreigner. The long periods of exchange rate stability are seen when there is a smooth 

government transition. However, the recent COVID-19 has seen a sharp appreciation 

in Kenya’s exchange rates.  Regarding BoP, Kenya has been in a deficit over the past 

decade due to highly valued imported merchandise compared to low valued agricultural 

exports. Kenya’s exports basket primarily comprises low-valued agricultural products, 

including tea, horticulture, apparel and clothing accessories, coffee, and Tobacco. On 

the other hand, Kenya's import basket is highly valued finished or intermediate 

products, including industrial machinery, petroleum products, iron and steel, road 

motor vehicles, and medicinal or pharmaceutical products. 

 

The comparison of the fitted asymmetric GARCH type models demonstrated that the 

optimal model for the exchange rates data is APARCH (1,1) - ARMA (3,0) model with 

a skewed normal distribution. Regarding Kenya's BoP, the optimal model is the ARMA 

(1,1)-IGARCH (1,1) model with generalized error distribution. Volatility clustering 

was present in exchange rate data only.  The results revealed the volatility persistence 

with a rapid decrease of the increases in the conditional variance due to shocks. 

Leverage effect was absent in both series. Regarding BoP, the parametrisation 

IGARCH imposes the parameters such that the leverage effect parameter is not 

reported. However, in exchange rate data a significant positive leverage parameter was 

found. Then, the resultant positive coefficient of 𝜆 (positive asymmetry) shows the 

absence of leverage result in the exchange rate series. The results are inconsistent with 

the theoretical perspective however, past empirical studies have found absence of the 

leverage effect. 

 

Estimated Kenya’s exchange rate volatility narrows over time, indicating sustained 

exchange rate stability. However, the results showed that the volatility estimates of BoP 

keep increasing over time, indicating that the BoP deficit is widening and unstable. The 

high volatility can be attributed to Kenya's export and import basket composition. 

Kenya's import basket comprises highly valued finished or intermediate goods, such as 

electronics, industrial machinery, and motor vehicles, which appreciates over time. On 

the contrary, the exports encompass low-valued agricultural products such as tea, 

horticulture, apparel, coffee, and tobacco produced seasonally. Besides, 2012 to 2019 
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had huge investments in infrastructure investments in roads and railway transport. 

However, the BoP volatility significantly dropped towards the end of 2019 to mid of 

2020. The sharp fall can be attributed to the global COVID-19 pandemic. The pandemic 

saw a restriction on international merchandise trade. 

 

5.2 Conclusion 

The predicted volatilities were captured and are consistent with the shifts in internal 

and external structural adjustments or shocks. For instance, concerning Exchange rates, 

volatility was high in the election periods. The recurrent election period in Kenya is a 

disincentive to investors due to uncertainty on the outcome of the elections. Thus, the 

electioneering period is linked to higher exchange rate volatility. Operating under the 

free-float exchange rate, Kenya's exchange rate is susceptible to global economic 

shocks such as the 2008/09 global financial crisis. The recent COVID-19 has also seen 

a sudden spike in the exchange rate volatility during 2020. While the exchange rate 

model will remain stable over the next 12 months, its volatility increases over time. 

 

The model's prediction intervals indicate a diverging uncertainty in exchange rates over 

the next year, signifying a long-run depreciation trend. Besides, the low order is 

consistent with the stylized fact that economic or financial series are influenced by 

recent past shocks rather than distant past shocks. Regarding exchange rate shifts in 

trade patterns due to the seasonal nature of the agricultural sector plays a crucial role in 

BoP volatility. Notably, Kenya's main export basket consists of agricultural products 

including tea, horticulture, articles of apparel and clothing accessories, coffee, and 

Tobacco which are seasonal in nature. Besides, the vast infrastructural investments in 

roads and the recent standard railway transport have attracted periodically disbursed 

loans. 
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5.3 Recommendation of the Study  

i. Due to the relative advantage of asymmetric-GARCH models over symmetric 

ARCH and GARCH models in capturing volatility, policymakers should adopt 

them to forecast Kenya's monthly exchange rate and BoPs data adequately using 

the respective best fit models.  

ii. Presence of exchange rate volatility indicates that it is susceptible to future 

external shocks, which can either weaken or strengthen it.  Therefore, investors 

in the financial market should be cautious when trading. 

iii. Declining balance of payment and its volatility indicates that the balance of 

payment deficit is widening and unstable. Thus, the government should 

maintain it competitiveness in the global market to attract foreign direct 

investment and improve net export. 

 

5.4 Suggestions for Further Study 

i. Future studies can consider hybrid models in fitting the respective series. For 

instance, having demonstrated that ARMA (1,1)-IGARCH (1,1) model is the 

best fit for BoP data, future studies can examine whether the Artificial neural 

network (ANN) ‒ ARMA (p, q) ‒ IGARCH (p, q) model can best fit the same 

series. In this method, a researcher can fit the exchange rate data to the ANN 

model then extract its residuals. The resultant residuals are then fitted using the 

ARMA (p, q) ‒ IGARCH (p, q) model. Similarly, ANN ‒ ARMA (p, q) ‒ 

APARCH (p, q) model is suitable for Kenya’s exchange rate data.  

ii. The generalizability of the study findings to other exchange rates in the money 

market cannot be guaranteed since the rates used were USD to KES exchange. 

Thus, future studies can consider other exchange rates. 

 

  



72 

 

REFERENCES 

Abdalla, S. Z. S. (2012). Modelling exchange rate volatility using GARCH models: 

Empirical evidence from Arab countries. International Journal of Economics 

and Finance, 4(3), 216-229. 

Abdelhafez, M. E. (2018). Using GARCH Models for Modelling and Forecasting 

Volatility an Empirical Study of the Egyptian Stock Market. European Journal 

of Social Sciences, 57(2), 167-178. 

Adam C., Aryeetey, E., Devarajan, S., Kanbur, R., &Kasekende, L. (Eds.). (2012). The 

Oxford companion to the economics of Africa. Oxford University Press. 

Aguirre, A., & Calderón, C. (2005). Real exchange rate misalignments and economic 

performance. Documentos de Trabajo (Banco Central de Chile), (315), 1-49. 

Akpan, E. A., Moffat, I. U., & Ekpo, N. B. (2016). Arma-arch modeling of the returns 

of first bank of Nigeria. European Scientific Journal, 12(8), 257-266. 

Alam, M. Z., & Rahman, M. A. (2012). Modelling volatility of the BDT/USD exchange 

rate with GARCH model. International Journal of Economics and 

Finance, 4(11), 193-204. 

Alberg, D., Shalit, H., & Yosef, R. (2008). Estimating stock market volatility using 

asymmetric GARCH models. Applied Financial Economics, 18(15), 1201-

1208. 

Alberg, D., Shalit, H., & Yosef, R. (2008). Estimating stock market volatility using 

asymmetric GARCH models. Applied Financial Economics, 18(15), 1201-

1208. 

Alexander, C. (2001). Market models. A Guide to Financial Data Analysis, 1. 

Ali, G. (2013). EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, 

IGARCH and APARCH models for pathogens at marine recreational 

sites. Journal of Statistical and Econometric Methods, 2(3), 57-73. 

Aliyev, F., Ajayi, R., & Gasim, N. (2020). Modelling asymmetric market volatility with 

univariate GARCH models: Evidence from Nasdaq-100. The Journal of 

Economic Asymmetries, 22, e00167. 

Almahadin, H. A., & Tuna, G. (2016). Modelling Volatility of the Market Returns of 

Jordanian Banks: Empirical Evidence Using GARCH framework. Global 

Journal of Economic and Business, 427(4131), 1-14. 

Andersen, T. G., Bollerslev, T., Christoffersen, P. F., & Diebold, F. X. (2006). 

Volatility and correlation forecasting. Handbook of economic forecasting, 1, 

777-878. 

Aristotelous, K. (2002). The impact of the post-1972 floating exchange-rate regime on 

US exports. Applied Economics, 34(13), 1627-1632. 



73 

 

Atoi, N. V. (2014). Testing volatility in Nigeria stock market using GARCH 

models. CBN Journal of Applied Statistics, 5(2), 65-93. 

Baharumshah, A. Z. (2001). The effect of exchange rate on bilateral trade balance: new 

evidence from Malaysia and Thailand. Asian Economic Journal, 15(3), 291-

312. 

Bahmani-Oskooee, M. (1991). Is there a long-run relation between the trade balance 

and the real effective exchange rate of LDCs? Economics letters, 36(4), 403-

407. 

Begu, L. S., Spătaru, S., & Marin, E. (2012). Investigating the Evolution of RON/EUR 

Exchange Rate: The Choice of Appropriate Model. Journal of Social and 

Economic Statistics, 1(2), 23-39. 

BENEDICT, M. B. (2013). Modelling Rates of Inflation in Ghana: An Application of 

Autoregressive Conditional Heteroscedastic (ARCH) Type Models (Doctoral 

dissertation, University of Ghana). 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. 

Journal of econometrics, 31(3), 307-327. 

Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A 

review of the theory and empirical evidence. Journal of econometrics, 52(1-2), 

5-59. 

Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A 

review of the theory and empirical evidence. Journal of econometrics, 52(1-2), 

5-59. 

Box, G. E., & Jenkins, G. M. (1970). Time series. Forecasting and Control, Hoiden-

Day, San Fran cisco. 

Boyd, D., Caporale, G. M., & Smith, R. (2001). Real exchange rate effects on the 

balance of trade: cointegration and the Marshall–Lerner condition. 

International Journal of Finance & Economics, 6(3), 187-200. 

Brailsford, T. J., & Faff, R. W. (1996). An evaluation of volatility forecasting 

techniques. Journal of Banking & Finance, 20(3), 419-438. 

Buchanan, J. M., & Yong J. Y. (2002). Globalization as framed by the two logics of 

trade. The Independent Review, 6 (3): 399-405.  

Calvo, G. A. (2000). Balance-of-payments crises in emerging markets: large capital 

inflows and sovereign governments. In Currency crises (pp. 71-97). University 

of Chicago Press. 

Cavallo, M. (2004). Exchange rate volatility and the US international balance 

sheet. FRBSF Economic Letter, 25. 

Chhorn, T., & Chaiboonsri, C. (2017). Modelling and forecasting tourist arrivals to 

Cambodia: An application of ARIMA-GARCH approach. 



74 

 

Chinn, M. D. (2006). A primer on real effective exchange rates: determinants, 

overvaluation, trade flows and competitive devaluation. Open economies 

review, 17(1), 115-143. 

Choi, J. J., & Rajan, M., (2011). A joint test of market segmentation and exchange risk 

factor in international capital markets. Journal of International Business Studies 

28, 29–49. 

Coffie, W. (2018). Modelling and forecasting volatility of the Botswana and Namibia 

stock market returns: evidence using GARCH models with different distribution 

densities. 

Cont, R. (2007). Volatility clustering in financial markets: empirical facts and agent-

based models. In Long memory in economics (pp. 289-309). Springer, Berlin, 

Heidelberg. 

Coondoo*, D., & Mukherjee, P. (2004). Components of volatility and their empirical 

measures: a note. Applied Financial Economics, 14(18), 1313-1318. 

Cryer, J. D., & Chan, K. S. (2008). Time series analysis: with applications in R. 

Springer Science & Business Media. 

Dana, A. N. (2016). Modelling and estimation of volatility using ARCH/GARCH 

models in Jordan’s stock market. Asian Journal of Finance & Accounting, 8(1), 

152-167. 

Darity, W. A. Jr., & Lewis S. D. (2005). Growth, trade, and uneven development. 

Cambridge Journal of Economics, 29 (1): 141-170.  

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive 

time series with a unit root. Journal of the American statistical 

association, 74(366a), 427-431. 

Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive 

time series with a unit root. Econometrica: Journal of the Econometric Society, 

1057-1072. 

Dijk, D. J. C. (2003). Brooks-introductory econometrics for finance. De Economist. 

Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock 

market returns and a new model. Journal of empirical finance, 1(1), 83-106. 

Efimova, O., &Serletis, A. (2014). Energy markets volatility modelling using 

GARCH. Energy Economics, 43, 264-273. 

Emmanuel, B., Ike, E. C., & Alhasan, Y. (2019) Effect of Exchange and Interest Rates 

on Foreign Direct Investment in Nigeria 2006-2018. Default template for IEEE 

journals.  

Enders, W. (2004). Applied econometric time series 2nd edition. New York: John 

Willey & Sons. Technometrics, 46(2), 264-264. 



75 

 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the 

variance of United Kingdom inflation. Econometrica: Journal of the 

Econometric Society, 987-1007. 

Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on 

volatility. The journal of finance, 48(5), 1749-1778. 

Fischer, S. (1993). The role of macroeconomic factors in growth. Journal of monetary 

economics, 32(3), 485-512. 

Frenkel, R., & Taylor, L. (2006). Real exchange rate, monetary policy and employment. 

UN. 

Frimpong, J. M., &Oteng-Abayie, E. F. (2006). Modelling and forecasting volatility of 

returns on the Ghana stock exchange using GARCH models. 

Fwaga, S. O., Orwa, G., &Athiany, H. (2017). Modeling Rates of Inflation in Kenya: 

An Application of Garch and Egarch models. Mathematical Theory and 

Modeling, 7(5), 75-83. 

Ghalanos A., (February 2, 2022) Introduction to the rugarch package. (Version 1.4-3). 

Available at: https://cran.r-project.org/web/packages/rugarch/vignettes/ 

Introduction_to_the_rugarch_package.pdf [Accessed February 19, 2022] 

Ghalanos, A. (2022). Introduction to the rugarch package.(Version 1.4-3). URL 

https://cran.r-project.org/web/packages/rugarch/vignettes/Introduction_to_

the_rugarch_package.pdf 

Ghosh, A., Gulde, A. M., & Wolf, H. (2002). Exchange rate regimes: Classification and 

consequences. Center for Economic Performance, 1, 1-22. 

Gil-Alana, L. A., & Mudida, R. (2012). Nominal exchange rates in Kenya. Are shocks 

transitory or permanent? An empirical investigation based on fractional 

integration (No. 06/2012). Navarra Center for International Development, 

University of Navarra. 

Gligorić, M. (2010). Exchange Rate and Trade Balance: J-curve Effect, 

Panoeconomicus, 2010, 1, pp. 23-41  

Goudarzi, H., & Ramanarayanan, C. S. (2011). Modelling asymmetric volatility in the 

Indian stock market. International Journal of Business and Management, 6(3), 

221. 

Gourinchas, P. & Rey H. (2007). International financial adjustment, Journal of Political 

Economy, 115, 665-703. 

Hafner, C. M., & Linton, O. (2017). An almost closed form estimator for the EGARCH 

model. Econometric Theory, 33(4), 1013-1038. 

Hasbalrasol, A., Kandora, A., & Hamdi, A. M. A (2017) Modelling Exchange Rate 

Volatility Using Asymmetric GARCH Models (Case Study Sudan). IOSR 

Journal of Mathematics, 12 (2), 71-77. 

https://cran.r-project.org/web/packages/rugarch/vignettes/%20Introduction_to_the_rugarch_package.pdf
https://cran.r-project.org/web/packages/rugarch/vignettes/%20Introduction_to_the_rugarch_package.pdf


76 

 

Hakim, A., & Sriyana, J. (2020). Risk Threshold for Sustainable Current Account 

Balance of Payments: An Indonesian Case. Asian Economic and Financial 

Review, 10(7), 778-789. 

Heakel, R. (2008). What is the Balance of Payments? Investopedia. May, 29, 2008. 

KANDORA, A. H. A. (2016). Modelling and Forecasting Estimation Exchange Rate 

Volatility in the Sudan (Doctoral dissertation, Sudan University of Science and 

Technology). 

Kandora, A. Hasbalrasol. A. (2016). Modelling and Forecasting Estimation Exchange 

Rate Volatility in the Sudan (Doctoral dissertation, Sudan University of Science 

and Technology). 

Kandora, A., Abbas, H., & Hamdi, A. M. A. (2016). Modelling Exchange Rate 

Volatility Using Asymmetric GARCH Models (Case Study Sudan). Journal of 

Mathematics, 12(2), 71-77. 

Kariuki, G. M. (2008). Determinants of current account balance in Kenya: The 

intertemporal approach–KIPPRA. 

Kiringai, J. (2012). Kenya: A Structural Transformation Paradox and Challenges. In 

Ernest Aryeetey et al, The Oxford Companion to the Economics of Africa. OUP. 

Liu, H. C., & Hung, J. C. (2010). Forecasting S&P-100 stock index volatility: The role 

of volatility asymmetry and distributional assumption in GARCH 

models. Expert Systems with Applications, 37(7), 4928-4934. 

Lubinga&Kiiza (2013). Business and Economic Research, Vol. 3, No. 1, pp .227-239. 

Maqsood, A., Safdar, S., Shafi, R., & Lelit, N. J. (2017). Modelling stock market 

volatility using GARCH models: A case study of Nairobi Securities Exchange 

(NSE). Open Journal of Statistics, 7(2), 369-381. 

Maqsood, A., Safdar, S., Shafi, R., & Lelit, N.J. (2017) Modelling Stock Market 

Volatility Using GARCH Models: A Case Study of Nairobi Securities 

Exchange (NSE). Open Journal of Statistics, 7, 369-381. 

Mishkin, F. S., & Eakins, S. G. (2019). Financial Markets. Pearson Italia. 

Moffat, I. U., Akpan, E. A., & Abasiekwere, U. A. (2017). A time series evaluation of 

the asymmetric nature of heteroscedasticity: An EGARCH approach. 

International Journal of Statistics and Applied Mathematics, 2(6), 111-117. 

Montiel P. (2000). "What Drives Consumption Booms?" World Bank Economic 

Review, Vol. 14 No. 3, pages 457-480, September.  

Mwamadzingo, M. H. (1988). Determination and effects of exchange rate change rate 

changes in Kenya 1966-1986 (Doctoral Dissertation, University of Nairobi). 

Najjar D., 2016, modeling and Estimation of Volatility Using ARCH/GARCH Models 

in Jordan’s Stock Market  



77 

 

Ndung’u, E. W. (2016). Evaluation of the responsiveness of the foreign exchange rate 

towards interventions by the Central Bank of Kenya (Doctoral dissertation, 

Strathmore University). 

Ndung’u, N.S., & Mwega, F. M. (1999). 'Macroeconomic Policies and Exchange rate 

Management in Kenya'. In R. Luder (Ed), Macroeconomic Policies and 

Exchange rate Management, San Francisco, and ICEG. 

Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. 

Econometrica 59(2): 347 – 370. 

Ngailo, E., Luvanda, E., & Massawe, E. S. (2014). Time Series Modelling with 

Application to Tanzania Inflation Data. Journal of Data Analysis and 

Information Processing, 2014. 

Ngechu.M. (2004), Understanding the research process and methods. An Introduction. 

Starbright Services, Nairobi. 

Nguyen, T. K. D. (2018, January). Modelling Exchange Rate Volatility Using GARCH 

Model: An Empirical Analysis for Vietnam. In International Econometric 

Conference of Vietnam (pp. 941-952). Springer, Cham. 

Njagi, H., Waititu, A. G., & Wanjoya, A. (2018). Modelling the Stock Price Volatility 

Using Asymmetry Garch and Ann-Asymmetry Garch Models. International 

Journal of Data Science and Analysis, 4(4), 46. 

Njuguna, W. K. (2016). The relationship between exchange rates and foreign direct 

investment in Kenya. Unpublished MSC Project, University of Nairobi. 

Nortey, E. N., Mbeah-Baiden, B., Dasah, J. B., & Mettle, F. O. (2014). Modelling rates 

of inflation in ghana: an application of arch models. Current Research Journal 

of Economic Theory, 6(2), 16-21. 

Nwoye, H. C. (2017). Determination of Volatility Clustering in Garch Family Models 

Using R (Doctoral dissertation). 

Oberholzer, N., & Venter, P. (2015). Univariate GARCH models applied to the 

JSE/FTSE stock indices. Procedia Economics and Finance, 24, 491-500. 

Ogun, O., Egwaikhide, O. Festus & Ogunleye, K. E.  (2009). Real exchange Rate and 

Foreign Direct Investment in Sub-Saharan Africa Countries, 1970-2005 PhD 

diss., University of Ibadan, Ibadan. 

Oiro, M. O. (2015). Real Exchange Rate Volatility and Exports in Kenya: 2005. Journal 

of World Economic Research, 4(5), 115-131. 

Okeyo, J., Ivivi, M., & Ngare, P. (2016). Modelling Inflation Rate Volatility in Kenya 

Using Arch-Type Model Family. 

Okeyo, J., Ivivi, M., & Ngare, P. (2016). Modelling Inflation Rate Volatility in Kenya 

Using Arch-Type Model Family. 



78 

 

Olweny, T., & Omondi, K. (2011). The effect of macro-economic factors on stock 

return volatility in the Nairobi stock exchange, Kenya. Economics and Finance 

review, 1(10), 34-48. 

Omari, C. O., Mwita, P. N., & Waititu, A. G. (2017). Modeling USD/KES exchange 

rate volatility using GARCH models. 

Onwukwe, C. E., Bassey, B. E. E., & Isaac, I. O. (2011). On modeling the volatility of 

Nigerian stock returns using GARCH models. Journal of mathematics 

research, 3(4), 31. 

Onyancha, L. (2012). The relationship between foreign exchange fluctuations and 

balance of trade in Kenya (Doctoral dissertation, University of Nairobi). 

Pahlavani, M., & Roshan, R. (2015). The comparison among ARIMA and hybrid 

ARIMA-GARCH models in forecasting the exchange rate of Iran. International 

Journal of Business and Development Studies, 7(1), 31-50. 

Papadamou, S. & Siriopoulos, C, (2014). Interest rate risk and the creation of the 

monetary policy committee: Evidence from banks’ and life insurance 

companies, stocks in the UK, Journal of Economics and business,71,pp45-67. 

PETRICĂ, A. C., & Stancu, S. (2017). Empirical Results of Modeling EUR/RON 

Exchange Rate using ARCH, GARCH, EGARCH, TARCH and PARCH 

models. Romanian Statistical Review, (1). 

PETRICĂ, A. C., & Stancu, S. (2017). Empirical Results of Modeling EUR/RON 

Exchange Rate using ARCH, GARCH, EGARCH, TARCH and PARCH 

models. Romanian Statistical Review, (1). 

Petrović, P., & Gligorić, M. (2010). Exchange rate and trade balance: J-curve 

effect. Panoeconomicus, 57(1), 23-41. 

Polodoo, V. (2011). Exchange rate volatility and macroeconomic performance in small 

island developing states. 

Poon S. (2005). A practical guide to Forecasting financial market Volatility, Wiley 

Finance, England 

Posedel, P. (2005). Properties and estimation of GARCH (1, 1) model. Metodoloski 

zvezki, 2(2), 243. 

Sewell, M. (2011). Characterization of financial time series. Rn, 11(01), 01. 

Sharku, G., Leka, B., & Bajrami, E. (2011). Considerations on Albanian life insurance 

Market, Romanian Economic Journal, 14(39), pp.133-150. 

Sharma, K., Papamitsiou, Z., & Giannakos, M. N. (2019, September). Modelling 

Learners’ Behaviour: A Novel Approach Using GARCH with Multimodal Data. 

In European Conference on Technology Enhanced Learning (pp. 450-465). 

Springer, Cham. 



79 

 

Shin J. 2005. Stock Returns and Volatility in Emerging Markets. International Journal 

of Business and Economics 4(1): 31. 

Tang, T. C., & Hooy, C. W. (2007). Asymmetric and Time Varying Volatility of the 

Balancing Item in Australia’s Balance of Payments Accounts. International 

Journal of Management, 24(1), 76. 

Tang, T. C. (2009). Testing for Non-linearity in the Balancing Item of Balance of 

Payments Accounts: The Case of 20 Industrial Countries. Economic 

Issues, 14(2). 

Tang, J., Sriboonchitta, S., Ramos, V., & Wong, W. K. (2016). Modelling dependence 

between tourism demand and exchange rate using the copula-based GARCH 

model. Current Issues in Tourism, 19(9), 876-894. 

Taylor, S. (1986). Modeling Financial Time Series John Wiley & Sons. Great Britain. 

Taylor, S. J. (1986). Modelling Financial Time Series} John Wiley. ChichЛ ester. 

Thorlie, M. A., Song, L., Wang, X., & Amin, M. (2014). Modelling exchange rate 

volatility using asymmetric GARCH models (evidence from Sierra 

Leone). International Journal of Science and Research, 3(11), 1206-1214. 

Tsai, H., & Chan, K. S. (2009). A note on the non-negativity of continuous-time ARMA 

and GARCH processes. Statistics and Computing, 19(2), 149-153. 

Tsay, R. S. (2005). Analysis of financial time series (Vol. 543). John Wiley& sons. 

Ugurlu, E., Thalassinos, E., & Muratoglu, Y. (2014). Modelling volatility in the stock 

markets using GARCH models: European emerging economies and Turkey. 

Wagala, A., Nassiuma, D. K., Islam, A. S., & Mwangi, J. W. (2012). Volatility 

modeling of the Nairobi Securities Exchange weekly returns using the ARCH-

type models. International journal of applied science and technology, 2(3), 165-

174. 

Wanjau, B. M. (2014). The relationship among real exchange rate, current account 

balance and real income in Kenya. International Journal of Business and Social 

Science, 5(9). 

Washington Kamau Njuguna (2016). The relationship between exchange rates and 

foreign direct investment in Kenya 

Wasiuzzama, S., & Angabini, A. (2011). GARCH models and the financial crisis-A 

study of the Malaysian stock market. The International Journal of Applied 

Economics and Finance, 5(3), 226-236. 

Weru, S. K., Waititu, A., & Ngunyi, A. (2019). Modelling Energy Market Volatility 

Using Garch Models and Estimating Value-At-Risk. Journal of Statistics and 

Actuarial Research, 2(1), 1-32. 



80 

 

Yau, H. Y., & Nieh, C. C. (2006). Interrelationships among stock prices of Taiwan and 

Japan and NTD/Yen exchange rate. Journal of Asian Economics, 17(3), 535-

552. 

Yule, G. U. (1925). II.—A mathematical theory of evolution, based on the conclusions 

of Dr. JC Willis, FR S. Philosophical transactions of the Royal Society of 

London. Series B, containing papers of a biological character, 213(402-410), 

21-87. 

Yule, G. U. (1926). Why do we sometimes get nonsense-correlations between Time-

Series?--a study in sampling and the nature of time-series. Journal of the royal 

statistical society, 89(1), 1-63. 

Zakoian, J. M., & Francq, C. (2010). GARCH models: structure, statistical inference 

and financial application. 

Zhang, Y. J., Yao, T., He, L. Y., & Ripple, R. (2019). Volatility forecasting of crude 

oil market: Can the regime switching GARCH model beat the single-regime 

GARCH models?. International Review of Economics & Finance, 59, 302-317. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

APPENDICES 

Appendix I: R Codes for Exchange Rates and Balance of Payment 

remove(list = ls()) 

#Exchange rate data 

Exc.Rate.Data<-read.csv("Kenya Shilling End Period Exchange Rates P. USD.csv") 

head(Exc.Rate.Data) 

tail(Exc.Rate.Data) 

Exch.Rate_KE<-

ts(Exc.Rate.Data$Kenya.Shilling.End.Period.Exchange.Rates.United.States.dollar, 

              start = c(1993,1), frequency = 12,) 

date<-seq(as.Date("1993-01-31"),by="1 

month",length.out=length(Exc.Rate.Data$Year)) 

length(date) 

 

library(ggplot2) 

Exch_plot<-

ggplot(data=NULL,aes(x=date,y=Exc.Rate.Data$Kenya.Shilling.End.Period.Exchang

e.Rates.United.States.dollar))+ 

  geom_line()+ 

  labs(title="(a)", caption="", y="Exhange Rate (Ksh/USD)", x="Year", 

color=3,size=12)+ 

  scale_x_date( date_labels = "%b%Y", breaks = "13 months")+ 

  theme(text = element_text(size=12), 

        axis.text.x = element_text(angle=90, hjust=0)) + 

  theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 12))+ 

  theme(axis.text.y = element_text(angle = 0, vjust=0, size = 12))+ 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ 

  theme(panel.background = element_blank())+ 

  theme(axis.line = element_line(colour = "black")) 

 

#BoP data 

BoP.Data<-read.csv("1112310648_Foreign Trade Summary.csv") 

head(BoP.Data) 

tail(BoP.Data) 

 

BoP.Data.Curr.M.Ksh<-ts(BoP.Data$Trade.balance, 

                        start = c(1998,8), frequency = 12) 

 

date2<-seq(as.Date("1998-08-01"),by="1 month",length.out=length(BoP.Data$Year)) 

length(date2) 

 

library(ggplot2) 

theme_set(theme_bw()) 

BoP_Plot<-ggplot(data=NULL,aes(x= date2,y=BoP.Data$Trade.balance))+ 

geom_line()+ 

  labs(title=" (b)", caption="", y="Trade Balance (Millions of Ksh)", x="Period", 

color=3,size=12)+ 

  scale_x_date( date_labels = "%b%Y", breaks = "13 months")+ 

  theme(text = element_text(size=12), 
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        axis.text.x = element_text(angle=90, hjust=0)) + 

  theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 12))+ 

  theme(axis.text.y = element_text(angle = 0, vjust=0, size = 12))+ 

  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ 

  theme(panel.background = element_blank())+ 

  theme(axis.line = element_line(colour = "black")) 

 

#Visualization 

library(ggpubr) 

ggarrange(Exch_plot, BoP_Plot, ncol =1) 

 

#-----------------------------For descriptive statistics and more graphing---------------------

------- 

if(!require(skimr)){install.packages("skimr")} 

library(skimr) 

library(scales) 

library(gridExtra) 

#============================= 

Exch.Rate_KE%>% skim() 

if(!require(moments)){install.packages("moments")} 

library(moments) 

skewness(BoP.Data.Curr.M.Ksh) 

kurtosis(BoP.Data.Curr.M.Ksh) 

shapiro.test(BoP.Data.Curr.M.Ksh) 

 

#BoP data ######## 

BoP.Data.Curr.M.Ksh%>% skim() 

skewness(BoP.Data.Curr.M.Ksh) 

kurtosis(BoP.Data.Curr.M.Ksh) 

shapiro.test(BoP.Data.Curr.M.Ksh) 

 

#------------------------------- Stationary test-------------------------------- 

library(tseries) 

#Exch rate data ####### 

#at level ###### 

adf.test(Exch.Rate_KE)  

#log diff ###### 

Exch.Rate_dLog <- diff(log(abs(Exch.Rate_KE))) 

 

adf.test(Exch.Rate_dLog)  

#options(digits=6) 

adf.test(Exch.Rate_dLog) 

 

##BoP ########## 

adf.test(BoP.Data.Curr.M.Ksh) #at level, stationary 

 

BoP_dLog<-diff(log(abs(BoP.Data.Curr.M.Ksh))) 

adf.test(BoP_dLog) 

 

#-------------------------------Time Series Plots--------------------------------------------- 
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par(mfrow=c(2,1))   

plot.ts(Exch.Rate_dLog, ylab ="Log difference", main ="(a) Exhange Rate data") 

plot.ts(BoP_dLog, ylab="Log difference", main = "(b) BoP data") 

par(mfrow=c(1,1)) 

 

#-------------------- Descriptive STATS of the d logged series-------------------------------

------- 

Exch.Rate_dLog%>% skim 

skewness(Exch.Rate_dLog) 

kurtosis(Exch.Rate_dLog) 

shapiro.test(Exch.Rate_dLog) 

 

 

BoP_dLog%>% skim() 

skewness(BoP_dLog) 

kurtosis(BoP_dLog) 

shapiro.test(BoP_dLog) 

 

 

 

#-------------------------------Histograms of d logs--------------------------------------------- 

par(mfrow=c(2,1))   

hist(Exch.Rate_dLog, ylab ="Frequency", main ="(a) Log-differenced Exhange Rate 

data", breaks = 36) 

hist(BoP_dLog, ylab="Frequency", main = "(b) Log-differenced BoP data", breaks = 

36) 

par(mfrow=c(1,1)) 

 

#Asymmetric garch #### 

#MEAN EQUATION 

#STL decomposition #### 

decomp = stl(Exch.Rate_dLog, s.window="periodic") 

plot(decomp) 

 

library(fpp2) 

auto.arima(Exch.Rate_dLog) 

 

auto.arima(Exch.Rate_dLog, trace = TRUE,  

           approximation = T,  

           stepwise = T,   

           seasonal = F, #set to false since the goal is to account for seasonality by  

           #incorporating Fourier terms in the model. SARIMA(p, d, q)(P, D, Q)[12]  

           #parameters aren't supported by `rugarch`, thus ARMA terms plus adequate 

external regressors are needed. 

           xreg = fourier(Exch.Rate_dLog, K = 6, h = NULL), 

           #the biggest possible K would be 6 (1 TO 6), ALL FAVOURED ARIMA (3,0,0) 

           lambda = NULL, 

           biasadj = F) 
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##testing for ARCH effects #### ---------------------------------------------------------------

---- 

if(!require("FinTS")){install.packages("FinTS")} 

library(FinTS) #for function `ArchTest()` 

ArchTest.1 <- ArchTest(Exch.Rate_dLog, lags=12, demean=TRUE) 

ArchTest.1 

 

ArchTest.2 <- ArchTest(BOP_dLog, lags=12, demean=TRUE) 

ArchTest.2 

 

#Simple ARCH 

arch.M<- garch(Exch.Rate_dLog,c(0,1)) 

summary(arch.M) 

 

###estimated ARCH(1)  variance 

hhat <- ts(2*arch.M$fitted.values[-1,1]^2) 

plot.ts(hhat) 

plot.ts(arch.M$fitted.values[-1,1]) 

arch.M$fitted.values[-1,1] 

 

#  GARCH(1,1) 

if(!require("fGarch")){install.packages("fGarch")} 

 

library(fGarch) 

GARCH_Model <- garchFit(data = Exch.Rate_dLog, trace = F) 

GARCH_Model 

 

#EGARCH##### 

if(!require("rugarch")){install.packages("rugarch")} 

require(rugarch) 

 

# Nelson's egarch model ##### 

egarch11.spec.1 = ugarchspec(variance.model=list(model="eGARCH", 

                                               garchOrder=c(1,1)), 

                           mean.model=list(armaOrder=c(3,0)), 

                           distribution.model="snorm"#Others: sstd",std, "ged","norm" 

#SKEWED NORMAL PREFERRED 

                           ,fixed.pars=list(omega= 1.999e-05) 

) 

Exch.egarch11.fit.1 = ugarchfit(egarch11.spec.1, Exch.Rate_dLog) 

Exch.egarch11.fit.1 

# Estimated standardized returns 

stdret <- residuals(Exch.egarch11.fit.1, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

##rmae 

sqrt(mean(abs(stdret))) 

 

#IGARCH model ##### 

igarch11.1.spec.1 = ugarchspec(variance.model=list(model="iGARCH", 
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                                                 garchOrder=c(1,1)), 

                             mean.model=list(armaOrder=c(3,0),include.mean=TRUE), 

                             distribution.model="snorm", #Others: sstd",std, ged 

                             fixed.pars=list(omega= 1.999e-05))#delta =1 

 

Exch.igarch11.1.fit.1 = ugarchfit(igarch11.1.spec.1, Exch.Rate_dLog) 

Exch.igarch11.1.fit.1 

 

# Estimated standardized returns 

stdret <- residuals(Exch.igarch11.1.fit.1, standardize = F) 

mean(stdret) 

#rmae 

sqrt(mean(abs(stdret))) 

 

 

 

#APAGARCH ######### 

apagarch11.1.spec.1 = 

ugarchspec(variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel = 

"APARCH"),  

                               mean.model=list(armaOrder=c(3,0),include.mean=TRUE),  

                               distribution.model="snorm", #fixed.pars=list(omega=0)) 

                               fixed.pars=list(omega= 1.999e-05)) 

 

 

# bEST ######### 

Exch.apagarch11.1.fit.1 = ugarchfit(apagarch11.1.spec.1, Exch.Rate_dLog) 

Exch.apagarch11.1.fit.1 

# Estimated standardized returns 

stdret <- residuals(Exch.apagarch11.1.fit.1, standardize = F) 

mean(stdret) 

#rmae 

sqrt(mean(abs(stdret))) 

 

 

# TGARCH model ##### 

Tgarch11.1.spec = 

ugarchspec(variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel = 

"TGARCH"),  

                             mean.model=list(armaOrder=c(3,0), 

                                             include.mean=TRUE),  

                             distribution.model="snorm", #fixed.pars=list(omega=0)) 

                             fixed.pars=list(omega= 1.999e-05)) 

 

Exch.Tgarch11.1.fit = ugarchfit(Tgarch11.1.spec, Exch.Rate_dLog) 

Exch.Tgarch11.1.fit 

# Estimated standardized returns 

stdret <- residuals(Exch.Tgarch11.1.fit, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 
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#rmae 

sqrt(mean(abs(stdret))) 

 

# GJR-GARCH model #### 

gjrgarch11.spec = ugarchspec(variance.model=list(model="gjrGARCH", 

                                                 garchOrder=c(1,1)), 

                             mean.model=list(armaOrder=c(3,0),include.mean=TRUE),  

                             distribution.model="snorm", 

                             fixed.pars=list(omega= 1.999e-05)) 

Exch.gjrgarch11.fit = ugarchfit(gjrgarch11.spec, Exch.Rate_dLog) 

Exch.gjrgarch11.fit 

 

# Estimated standardized returns 

stdret <- residuals(Exch.gjrgarch11.fit, standardize = F) 

mean(stdret) 

#rmae 

sqrt(mean(abs(stdret))) 

 

 

##Diagnostics #### 

 

#BEST FIT #### 

Exch.apagarch11.1.fit.1 

 

# Using the method sigma to retrieve the estimated Volailities  

garchvol <- sigma(Exch.apagarch11.1.fit.1) 

 

# Plot the volatility for 2017 

plot(garchvol["2013"]) 

 

plot(garchvol, main ="Estimated Volatilities") 

plot(Exch.apagarch11.1.fit.1, which=9) 

class(Exch.apagarch11.1.fit.1) 

# 

 

plot(Exch.apagarch11.1.fit.1, which =2) 

# series with 95% conf. int (+/- 2 conditional std. dev.) 

 

plot(Exch.apagarch11.1.fit.1,which = 2) #TO 12  

plot(Exch.apagarch11.1.fit.1, which = 4)   

 

plot(Exch.apagarch11.1.fit.1, which = 10)  #ACF of residual 

 

 

plot(residuals(Exch.apagarch11.1.fit.1, standardize = TRUE), type = "h",  

     main = "Residuals from ARMA(3, 0) - APARCH (1, 1) model\n Data: Kenya's 

Exchange Rates",  

     major.ticks = "years", grid.ticks.on = "years") 

plot(Exch.apagarch11.1.fit.1, which =8) 
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par(mfrow=c(1,2)) 

 

plot(residuals(Exch.apagarch11.1.fit.1, standardize = TRUE), type = "h",  

     main = "Residuals from ARMA(3, 0) - APARCH (1, 1) model\n",  

     major.ticks = "years", grid.ticks.on = "years") 

plot(Exch.apagarch11.1.fit.1, which =8) 

par(mfrow=c(1,1)) 

 

# Compute unconditional volatility 

sqrt(uncvariance(Exch.apagarch11.1.fit.1)) 

 

 

# Forecast volatility 12 months ahead 

garchforecast <- ugarchforecast(fitORspec = Exch.apagarch11.1.fit.1, 

                                n.ahead = 12) 

 

plot(garchforecast,which = 1) 

 

par(mfrow=c(1,2)) 

plot(Exch.apagarch11.1.fit.1, which =2, ylab= "Series") 

plot(garchforecast,which = 1) 

par(mfrow=c(1,1)) 

 

 

garchforecast 

# Extract the predicted volatilities and print them 

print(sigma(garchforecast)) 

print(fitted(garchforecast)) 

 

 

###BoP Modelling ########### 

 

#MEAN EQUATION 

#STL decomposition #### 

decomp = stl(BoP_dLog, s.window="periodic") 

plot(decomp) 

 

auto.arima(BoP_dLog) 

#ARIMA(3,0,2)(1,0,0)[12] with non-zero mean  

 

#fourier pars 

auto.arima(BoP_dLog, trace = TRUE,  

           approximation = T,  

           stepwise = T,   

           seasonal = F, #set to false since the goal is to account for seasonality by  

           #incorporating Fourier terms in the model. SARIMA(p, d, q)(P, D, Q)[12]  

           #parameters aren't supported by `rugarch`, thus ARMA terms plus adequate 

external regressors are needed. 

           xreg = fourier(BOP_dLog, K = 6, h = NULL), 



88 

 

           #the frequency of the ts is 12 so that the biggest possible K would be 6 (1 TO 6), 

ALL FAVOURED ARIMA (3,0,0) 

           lambda = NULL, 

           biasadj = F) 

 

 

 

GARCH_Model_2 <- garchFit(data = BoP_dLog, trace = F) 

GARCH_Model_2 

#  mu      omega     alpha1      beta1  

#0.0096173  0.0074497  0.2900864  0.6475133   

 

#EGARCH##### 

# Nelson's egarch model ---------------------------------------------------- 

 

egarch11.spec.2 = ugarchspec(variance.model=list(model="eGARCH", 

                                                 garchOrder=c(1,1)), 

                             mean.model=list(armaOrder=c(0,3)), 

                             distribution.model="ged"#Others: sstd",std, "ged","norm" 

#SKEWED NORMAL PREFERRED 

                             ,fixed.pars=list(mu = 0.0096173) 

) 

BoP.egarch11.fit.2 = ugarchfit(egarch11.spec.2, BoP_dLog) 

BoP.egarch11.fit.2 

 

# Estimated standardized returns 

stdret <- residuals(BoP.egarch11.fit.2, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

##2 -------------------------- 

egarch11.spec.2 = ugarchspec(variance.model=list(model="eGARCH", 

                                                 garchOrder=c(1,1)), 

                             mean.model=list(armaOrder=c(1,1)), 

                             distribution.model="ged"#Others: sstd",std, "ged","norm" 

#SKEWED NORMAL PREFERRED 

                             ,fixed.pars=list(mu = 0.0096173) 

) 

BoP.egarch11.fit.2 = ugarchfit(egarch11.spec.2, BoP_dLog) 

BoP.egarch11.fit.2 

# Estimated standardized returns 

stdret <- residuals(BoP.egarch11.fit.2, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

#IGARCH model ##### -------------------------------------------------------------------------

----- 

igarch11.1.spec.1 = ugarchspec(variance.model=list(model="iGARCH", 
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                                                   garchOrder=c(1,1)), 

                               mean.model=list(armaOrder=c(0,3),include.mean=TRUE), 

                               distribution.model="ged", #Others: sstd",std, ged 

                               fixed.pars=list(mu = 0.0096173)) 

 

BoP.igarch11.1.fit.1 = ugarchfit(igarch11.1.spec.1, BoP_dLog) 

BoP.igarch11.1.fit.1 

 

# Estimated standardized returns 

stdret <- residuals(BoP.igarch11.1.fit.1, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

 

##2-------------------------- 

igarch11.1.spec = ugarchspec(variance.model=list(model="iGARCH", 

                                                 garchOrder=c(1,1)), 

                             mean.model=list(armaOrder=c(1,1),include.mean=TRUE), 

                             distribution.model="snorm", #Others: sstd",std, ged 

                             fixed.pars=list(mu = 0.0096173))#delta =1 

 

BoP.igarch11.1.fit = ugarchfit(igarch11.1.spec, BoP_dLog) 

BoP.igarch11.1.fit 

 

# Estimated standardized returns 

stdret <- residuals(BoP.igarch11.1.fit, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

 

#APAGARCH ######### -----------------------------------------------------------------------

------- 

apagarch11.1.spec.1 = 

ugarchspec(variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel = 

"APARCH"),  

                                 mean.model=list(armaOrder=c(0,3),include.mean=TRUE),  

                                 distribution.model="snorm", #fixed.pars=list(omega=0)) 

                                 fixed.pars=list(mu = 0.0096173)) 

 

BoP.apagarch11.1.fit.1 = ugarchfit(apagarch11.1.spec.1, BoP_dLog) 

BoP.apagarch11.1.fit.1 

# Estimated standardized returns 

stdret <- residuals(BoP.apagarch11.1.fit.1, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

##2-------------------------- 
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apagarch11.1.spec = 

ugarchspec(variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel = 

"APARCH"),  

                               mean.model=list(armaOrder=c(1,1),include.mean=TRUE),  

                               distribution.model="snorm", #fixed.pars=list(omega=0)) 

                               fixed.pars=list(mu = 0.0096173)) 

 

BoP.apagarch11.1.fit = ugarchfit(apagarch11.1.spec, BoP_dLog) 

BoP.apagarch11.1.fit 

# Estimated standardized returns 

stdret <- residuals(BoP.apagarch11.1.fit, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

 

 

# TGARCH model #####-------------------------------------------------------------------------

- 

Tgarch11.1.spec = 

ugarchspec(variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel = 

"TGARCH"),  

                             mean.model=list(armaOrder=c(0,3), 

                                             include.mean=TRUE),  

                             distribution.model="snorm", #fixed.pars=list(omega=0)) 

                             fixed.pars=list(mu = 0.0096173)) 

 

BoP.Tgarch11.1.fit = ugarchfit(Tgarch11.1.spec, BoP_dLog) 

BoP.Tgarch11.1.fit 

# Estimated standardized returns 

stdret <- residuals(BoP.Tgarch11.1.fit, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

 

##2-------------------------- 

Tgarch11.1.spec.1 = 

ugarchspec(variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel = 

"TGARCH"),  

                               mean.model=list(armaOrder=c(1,1), 

                                               include.mean=TRUE),  

                               distribution.model="snorm", #fixed.pars=list(omega=0)) 

                               fixed.pars=list(mu = 0.0096173)) 

 

BoP.Tgarch11.1.fit.2 = ugarchfit(Tgarch11.1.spec.1, BoP_dLog) 

BoP.Tgarch11.1.fit.2 

# Estimated standardized returns 

stdret <- residuals(BoP.Tgarch11.1.fit.2, standardize = F) 

mean(stdret) 
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mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

 

 

# GJR-GARCH model ######-------------------------------------------------- 

gjrgarch11.spec = ugarchspec(variance.model=list(model="gjrGARCH", 

                                                 garchOrder=c(1,1)), 

                             mean.model=list(armaOrder=c(0,3),include.mean=TRUE),  

                             distribution.model="snorm", 

                             fixed.pars=list(mu = 0.0096173)) 

BoP.gjrgarch11.fit.1 = ugarchfit(gjrgarch11.spec, BoP_dLog) 

BoP.gjrgarch11.fit.1 

 

# Estimated standardized returns 

stdret <- residuals(BoP.gjrgarch11.fit.1, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

 

##2-------------------------- 

gjrgarch11.spec = ugarchspec(variance.model=list(model="gjrGARCH", 

                                                 garchOrder=c(1,1)), 

                             mean.model=list(armaOrder=c(1,1),include.mean=TRUE),  

                             distribution.model="snorm", 

                             fixed.pars=list(mu = 0.0096173)) 

BoP.gjrgarch11.fit.2 = ugarchfit(gjrgarch11.spec, BoP_dLog) 

BoP.gjrgarch11.fit.2 

 

# Estimated standardized returns 

stdret <- residuals(BoP.gjrgarch11.fit.2, standardize = F) 

mean(stdret) 

mean(abs(stdret)) 

#rmae 

sqrt(mean(abs(stdret))) 

 

##Diagnostics 

 

#BEST FIT ##### 

BoP.igarch11.1.fit 

 

# Using the method sigma to retrieve the estimated Volatilities  

garchvol <- sigma(BoP.igarch11.1.fit) 

 

# Plot the volatility for 2017 

plot(garchvol["2013"]) 

 

plot(garchvol, main ="Estimated Volatilities") 

plot(BoP.igarch11.1.fit, which=9) 
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class(BoP.igarch11.1.fit) 

# 

 

plot(BoP.igarch11.1.fit, which =2) 

# series with 95% conf. int (+/- 2 conditional std. dev.) 

 

plot(BoP.igarch11.1.fit,which = 2) #TO 12  

plot(BoP.igarch11.1.fit, which = 4)   

 

plot(BoP.igarch11.1.fit, which = 10)  #ACF of residual 

 

plot(residuals(BoP.igarch11.1.fit, standardize = TRUE), type = "h",  

     main = "Residuals from ARMA(1, 1) - IGARCH (1, 1) model\n Data: Log-

differenced sereis of Kenya's BoP",  

     major.ticks = "years", grid.ticks.on = "years") 

plot(BoP.igarch11.1.fit, which =8) 

 

par(mfrow=c(1,2)) 

plot(residuals(BoP.igarch11.1.fit, standardize = TRUE), type = "h",  

     main = "Residuals from ARMA(1, 1) - IGARCH (1, 1) model\n Data: Log-

differenced sereis of Kenya's BoP",  

     major.ticks = "years", grid.ticks.on = "years") 

plot(BoP.igarch11.1.fit, which =8) 

par(mfrow=c(1,1)) 

 

# Compute unconditional volatility 

sqrt(uncvariance(BoP.igarch11.1.fit)) 

 

# Forecast volatility 12 months ahead 

garchforecast <- ugarchforecast(fitORspec = BoP.igarch11.1.fit, 

                                n.ahead = 12) 

 

plot(garchforecast,which = 1) 

par(mfrow=c(1,2)) 

plot(BoP.igarch11.1.fit, which =2, ylab= "Series") 

plot(garchforecast,which = 1) 

par(mfrow=c(1,1)) 

 

garchforecast 

# Extract the predicted volatilities and print them 

print(sigma(garchforecast)) 

print(fitted(garchforecast)) 

 

plot(BoP.Data.Curr.M.Ksh) 

lines(fitted(garchforecast), col =4) 

## 
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