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Abstract — Operators in Hilbert space have 

properties which are useful in the study of 

mathematical abstract areas such as 

approximation theory, Banach Fixed point theory, 

the spectral theory as well as Quantum 

Mechanics. Schrödinger equation is a 

fundamental entity with many applications in 

Quantum Mechanics. This equation was initially 

derived by applying the knowledge of 

electromagnetic wave function and Einstein 

theory of relativity. Later, it was derived by 

applying the knowledge of Newtonian mechanics. 

It was also derived by extending the wave 

equation for classical fields to photons and 

simplified using approximations consistent with 

generalized non-zero rest mass. However, from 

the existing literature no study has been done on 

deriving Schrödinger equation using properties of 

Hilbert space operators. In this study, Hilbert 

space operators that include unitary operators, 

self adjoint operators and compact operators, 

norms of linear operators, Hilbert Schmidt 

operator, normal operators together with 

Lebesque Integral, Neumann Integral and 

spectrum are used in place of the existing 

concepts of electromagnetic wave function, 

Einstein theory of relativity and approximation 

consistent with generalized non zero mass to 

derive the Schrödinger equation. The derivation of 

Schrödinger equation and its application using 

Hilbert space operators enhances a better 

understanding of the concept of Schrödinger 

equation. The results of this work can further find 

use in quantum mechanics as well as in 

mathematical operator theory. 

Keywords— Hilbert Space Operators; 
Electromagnetic wave function; Einstein theory of 
relativity and Schrodinger equation; 

 

I.  INTRODUCTION  

 

Schrödinger equation was first derived by Schrödinger 

in 1926. In his work he used the knowledge of 

electromagnetic prototype of wave equation  

 (𝑣2∇² −
𝑑2

𝑑𝑡2)𝐸 and Einstein theory of relativity 

 (𝐸 = 𝑚𝑐2) [20]. The purpose of his study was to find 

the wave function of the electron. [11] used Newtonian 

mechanics to derive Schrödinger equation. In his work 

he used the hypothesis that any particle of mass m 

constantly undergoes Brownian motion with diffusion 

co-efficient 
ℏ

2𝑚
. [20] derived Schrödinger equation by 

extending the wave equation for classical fields to 

photons and generalized to non-zero rest mass 
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particles using approximations consistent with non-

relativistic particles. 

 

Hilbert space gives a means by which one can 

consider functions as points belonging to an infinite 

dimensional space. In [10],  the states of quantum 

systems are identified by unit vectors in an infinite 

dimensional complex Hilbert space and observables 

such as position, momentum and energy are realized 

as self-adjoint linear operators acting on the space. 

Consequently, [10] showed the relationship between 

the needs of physics and the mathematics of 

operators in Hilbert spaces. 

 

According to [15], the concept of Hilbert spaces was 

first introduced by David Hilbert between 1862- 1943. 

These Hilbert spaces are complete inner product 

spaces.  

If 𝑇 is an operator on Hilbert space ℋ   then: 

i. 𝑇 is normal if 𝑇𝑇∗ = 𝑇∗𝑇. 

ii. 𝑇 is self-adjoint (or Hermitian) if 𝑇 = 𝑇∗. 

iii. 𝑇 is positive if 〈𝑇𝑥, 𝑥〉 ≥ 0 for all 𝑥 ∈ ℋ. 

iv. 𝑇 is unitary if  𝑇𝑇∗ = 𝑇∗𝑇 = 1. 

 

As per [7], for an operator  𝑇 ∈ 𝐵(ℋ) on Hilbert space, 

and by Reisz Representation theorem, there exists a 

unique vector 𝑧 = 𝑧𝑦 ∈ ℋ  so that 〈𝑦, 𝑇𝑥〉 = 〈𝑧𝑦, 𝑥〉  for 

all 𝑥 ∈ ℋ. The map 𝑇∗:ℋ → ℋ is defined as 𝑇∗𝑦 = 𝑧𝑦. 

By construction 

〈𝑇∗𝑦, 𝑥〉 = 〈𝑦, 𝑇𝑥〉 ∀𝑥, 𝑦 ∈ ℋ , the condition uniquely 

determines 𝑇∗𝑦  for  𝑦 ∈ ℋ . Thus 𝑇∗  is an adjoint 

operator of  𝑇. 

 

If two elements of the set 𝑀 are pairwise orthogonal 

vectors, each of the vector is normalized and each 

has a norm equal to one, then the set 𝑀  is called 

orthonormal [1]. 

 

The definition of Riemann’s integral is adopted from 

[10]. Let 𝑓 be defined on [𝑎, 𝑏], then 𝑓  is said to be 

Riemann integrable on [𝑎, 𝑏]  if there is a number 𝐿 

with the following property. For every 𝜀 > 0  there 

exists a 𝛿 > 0 such that |𝜎 − 𝐿| < 𝜀. If 𝜎 is Riemann’s 

sum of 𝑓 over partition 𝑃 of [𝑎, 𝑏] such that   ‖𝑃‖ < 𝛿. 

Then 𝐿 is Riemann’s integral of 𝑓 over  

∫ 𝑓(𝑥)𝑑𝑥 = 𝐿.
𝑏

𝑎
                   (1.1) 

Suppose ℋ is a separable Hilbert space and 𝑇 ∈

(𝐵)ℋ. According to [2],  𝑇 is a Hilbert- Schmidt 

operator if there exist an operator basis   

                                        {𝑒𝑛}𝑛
∞: ∑ ‖𝑇𝑒𝑛‖² < ∞∞

𝑛=1 .         (1.2) 

 

Vectors which have complex components are 

symbolized by |𝑎⟩ and they can also be obtained by 

linear combination of a set of basis vectors i.e.  

|𝑎⟩ = 𝑐1 |𝑥1⟩ + 𝑐2|𝑥2⟩……… .= (𝑥 + 𝑎)𝑛 = ∑ 𝑐𝑗|𝑥𝑗⟩𝑗  (1.3) 

 

Based on the properties of Hilbert space operators 

studied above, an alternative approach in the 

formulation of the Schrödinger equation is of great 

importance. 

II. RELATED LITERATURE REVIEW 

2.1  Derivation of Electromagnetic Wave Function 

Electromagnetic wave equation is derived from 

Maxwell equations, that is, as shown from equations 

(2.1a) – (2.1d) [5]. 

                ∇⃗⃗  . �⃗� = 0 (Gauss’ law of electricity)      (2.1a) 

∇⃗⃗  . �⃗� = 0  (Gauss law of magnetism)                                                   

(2.1b) 

∇x�⃗� = −
𝜕�⃗� 

𝜕𝑡
(Faraday’s law induction)    (2.1c) 

∇x�⃗� = 𝜇0𝜀0
𝜕�⃗� 

𝜕𝑡
 (Ampere’s’ law) (2.1d) 

Taking the curl for �⃗� field propagated along the 𝑥 

direction, by [19] we obtain, 

∇ × �⃗� (𝑥, 𝑡)𝑗̂ = ⌊

𝑖̂ 𝑗̂ �̂�
𝜕𝑦

𝜕𝑥

𝜕𝑦

𝜕𝑥

𝜕𝑦

𝜕𝑥

0 𝐸(𝑥, 𝑡) 0

⌋ =
𝜕�⃗� 

𝜕𝑥
�̂� (2.2) 

Taking the curl of Faraday’s law and substituting 

Ampere’s law for a charge and current free region, 

[19] obtained 

∇ × ∇ × E = −
1

𝑐2

𝜕²

𝜕𝑡²
                (2.3) 
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[19] represented three dimensions wave equation, as 

shown below 

𝜕²𝐸𝑥

𝜕𝑥²
+

𝜕²𝐸𝑥

𝜕𝑦²
+

𝜕²𝐸𝑥

𝜕𝑧²
=

1

𝑐²

𝜕²𝐸

𝜕𝑡²
.        (2.4) 

 

Remark 2.1.1 

The derived electromagnetic wave equation in this 

literature will be essential in establishment of the 

correlation between Hilbert space operators and 

Electromagnetic wave equation. This then will be later 

used in the derivation of the Schrödinger equation. 

2.2 The Einstein Theory of Relativity 

Einstein relativistic expressions can be derived 

starting from the relativity principle and the classical 

Lorentz's law (Hamdan et al., 2007) as shown below    

𝐹 = 𝑞(�⃗� + 𝑣  × �⃗� )                             (2.5)                                                                                                                                                                                                                                

where, 

𝑞-charged particle 

𝑣 -velocity of the particle 

�⃗� -electric field and 

�⃗� -magnetic field flux density. 

 

The Cartesian components of equation are given by 

  𝐹𝑥 = 𝑞(𝐸𝑥 + 𝑣𝑦, 𝐵𝑧 − 𝑣𝑧, 𝐵𝑦)                 (a)                                      

(2.6) 

 𝐹𝑦 = 𝑞(𝐸𝑦 + 𝑣𝑧, 𝐵𝑥 − 𝑣𝑥, 𝐵𝑧)                                      (b) 

 𝐹𝑧 = 𝑞(𝐸𝑧 + 𝑣𝑥, 𝐵𝑦 − 𝑣𝑦, 𝐵𝑥)                                      (c)  

 

Applying relativity principles on equations (2.6) we 

obtain 

𝐹ˊ𝑥 = 𝑞(𝐸ˊ𝑥 + 𝑣ˊ𝑦, 𝐵ˊ𝑧 − 𝑣ˊ𝑧, 𝐵ˊ𝑦)           (a)                           

(2.7) 

                          𝐹ˊ𝑦 = 𝑞(𝐸ˊ𝑦 + 𝑣ˊ𝑧, 𝐵ˊ𝑥 − 𝑣ˊ𝑥, 𝐵ˊ𝑧)           (b) 

                            𝐹ˊ𝑧 = 𝑞(𝐸ˊ𝑧 + 𝑣ˊ𝑥, 𝐵ˊ𝑦 − 𝑣ˊ𝑦, 𝐵ˊ𝑥)          (c) 

 

According to [8], the relativity principles are 

represented by equations (2.8a)-(2.8c).where scalar 

factor 𝛾  is fixed by applying the relativity principle    

𝛾 =
1

√1−
𝑢²

𝑐²

 

𝑣ˊ𝑥 =
𝑣𝑥−𝑢

1−𝑣𝑥
𝑢

𝑐2

                       (a)    

                         

  (2.8) 

             𝑣ˊ𝑦 =
𝑣𝑦

𝛾(1−
𝑢𝑣𝑥
𝑐²

)
                                   (b) 

                                   𝑣′𝑧 =
𝑣𝑧

𝛾(1−
𝑢𝑣𝑥
𝑐²

)
                         (c) 

 

In classical physics, a particle with rest mass 𝑚0 with 

velocity 𝑣 has a momentum of 𝑝 = 𝑚0𝑣 and a kinetic 

energy of 𝑇 =
1

2
𝑚0𝑣² and in relativistic physics,  

𝑝 =
𝑚0𝑣

√1 −
𝑣²
𝑐²

= 𝑚𝑣 

 

𝑝² = 𝛾²(𝑚²0𝑢²) = 𝑚²𝑣²                             (2.8) 

 

The root for the first term presented is 

𝜀 = 𝑚𝑐²√1 −
𝑣ˊ²

𝑐²
= 𝛾𝑚0𝑐² = 𝑚𝑐²                             (2.9) 

 

Equation (2.9) is the relativistic energy 𝐸 , telling us 

that the change of mass of a particle is accompanied 

by change in its energy and vice versa. 

Using the above classical Cartesian components of 

Lorentz's law, relativistic velocities, classical 

momentum and kinetic energy show above, Hamdan 

et al., (2007) derived relativistic energy as shown 

below.  

𝜀2 = 𝑐²𝑝² + 𝑚²0𝑐
4                             (2.10) 

 

Remark 2.2.1 

This relativistic energy derived from the literature will 

be useful in the derivation of Schrödinger equation 

using Hilbert space operators. 
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2.3 Derivation of Schrödinger Equation 

[20] dealt with the derivation of Schrödinger equation. 

In their work they used electromagnetic wave 

equation and Einstein’s theory of relativity knowledge. 

They applied the same approach as that used by 

Schrödinger. However, [20] extended the wave 

equation for classical fields to photons and 

generalized to non-zero rest mass particles and using 

approximations consistent with non-relativistic 

particles. [20] considered the one dimension equation: 

                                               
𝜕2𝐸

𝜕2𝑥
=

1

𝑐2

𝜕2𝐸

𝜕2𝑡
              (2.11)  

This satisfies,  

𝐸(𝑡, 𝑥) = 𝐸0𝑒
𝑖(𝑘𝑥−𝜔𝑡)                                            (2.12) 

where 𝑘 =
2𝜋

𝜆
 and 𝜔 = 2𝜋𝜐  are spatial and temporal 

frequancies respectively. Substituting equation (2.11) 

in (2.12) he obtained 

(
𝜕²

𝜕²𝑥
−

1

𝑐2

𝜕2

𝜕2𝑡
)𝐸0𝑒

𝑖(𝑘𝑥−𝜔𝑡) = 0                             (2.13) 

 On solving the wave vector, the dispersion relation for 

light in free space is 𝑘 =
𝜔

𝑐
 where 𝑐  is a wave 

propagation speed. In this case speed of light is in 

vacuum. From Einstein and Compton, the energy of 

photon is 𝜀 = ℎ𝜐 = ℏ𝜔 and the momentum of photon 

is  

𝑝 =
ℎ

𝜆
= ℏ𝑘.                                                          (2.14) 

Therefore equation (2.12) becomes 

𝐸(𝑥, 𝑡) = 𝐸0𝑒
𝑖

ℎ
(𝑝𝑥−ℇ𝑡)

                             (2.15)  

And on substituting equation (2.15) in equation (2.13) 

[8] obtained 

−
1

ℎ2 (𝑝2 +
𝜔2

𝑐2)𝐸0𝑒
𝑖

ℎ
(𝑝𝑥−𝜀𝑡) = 0          (2.16)  

where, 𝜀2 = 𝑝2𝑐2.      

Since [20] were dealing with electric field, they 

replaced 𝐸 with Ψ, the wave function. Therefore, 

                                           −
1

ℎ2 (𝑝2 +
𝜔2

𝑐2)Ψ0𝑒
𝑖

ℎ
(𝑝𝑥−𝜀𝑡) = 0  

          (2.17)  

For relativistic total energy, 𝜀² = 𝑝²𝑐² + 𝑚²𝑐4  i.e.  

𝜀 = 𝑚𝑐²√1 +
𝑝²

𝑚²𝑐²
                           (2.18) 

Expanding binomially, we get 

                 ≃ 𝑚𝑐2 +
𝑝2

𝑚2𝑐2 = 𝑚𝑐2 + Ʈ                         (2.19) 

where Ʈ is the classical kinetic energy.  

Thus equation Ψ(𝑥, 𝑡) = Ψ0

𝑖

ℎ
(𝑝𝑥−𝜀𝑡)

 becomes  

Ψ(𝑥, 𝑡) = Ψ0 = 𝑒
𝑖
ℎ
(𝑝𝑥−𝑚𝑐2𝑡−Ʈ𝑡)

 

= 𝑒−
𝑖

ℎ
𝑚𝑐²𝑡Ψ0𝑒

𝑖

ℎ
(𝑝𝑥−Ʈ𝑡)

        (2.20) 

Now if we let  Ψ0𝑒
𝑖

ℎ
(𝑝𝑥−Ʈ𝑡) = Φ, then  

Ψ(𝑥, 𝑡) = 𝑒
𝑖

ℎ
(𝑚𝑐2𝑡)Φ                           (2.21) 

Carrying out the second derivative with respect to 𝑡 on 

equation (2.21) Ward & Volmer (2006) obtained 

𝜕²𝑦

𝜕𝑥²
= (−

𝑚2𝑐4

ℏ2 𝑒−
𝑖

ℏ
𝑚𝑐2𝑡Φ −

2𝑖

ℏ
𝑚𝑐2𝑒−

𝑖

ℏ
𝑚𝑐2𝑡 𝜕Φ

𝜕𝑡
) + 𝑒−

𝑖

ℏ
𝑚𝑐2𝑡Φ                

(2.22) 

The first term in brackets is large and the last term is 

small. Keeping the large term and discarding the small 

one, using this approximation in the Klein-Gordon 

equation 

             
1

𝑐2

𝜕²

𝜕𝑡²
Ψ − ∇2Ψ +

𝑚2𝑐4

ℏ2 Ψ = 0                      

(2.23) 

[20] arrived at the Schrödinger equation for free 

particle                                               

                                              
−ℏ²

2𝑚
∇²Φ = 𝑖ℏ

𝜕Φ

𝜕𝑡
               (2.24) 

where Φ is a non-relativistic wave function. 

 

Remark 2.3.1 

The above derivation of Schrödinger equation using 

electromagnetic wave equation and Einstein theory of 

relativity, helped in the derivation Schrödinger 

equation using Hilbert space operators.  

 

2.4 Application of Hilbert Spaces Operators 

In this section, we present several results based on 

properties of operators that shall be essential in the 

sequel especially in obtaining our main objective:  

 

Theorem 2.4.1: [13]. 

http://www.jmess.org/


Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 6 Issue 3, March - 2020 

www.jmess.org 

JMESSP13420622 3081 

Let 𝑆, 𝑇 ∈ 𝐵(ℋ), 𝑐 ∈ ℂ. Then: 

i. 𝑇∗ ∈ 𝐵(𝐻) 

ii. (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗, (𝑐𝑇)∗ = 𝑐̅𝑇∗ 

iii. (𝑆𝑇)∗ = 𝑇∗𝑆∗ 

iv. 𝑇∗∗ = 𝑇 

v. If 𝑇  is invertible then 𝑇∗  is also invertible and 

(𝑇∗)−1 = (𝑇−1)∗ 

vi. ‖𝑇‖ = ‖𝑇∗‖, ‖𝑇𝑇∗‖ = ‖𝑇∗𝑇‖ = ‖𝑇‖2. That is, the 

(𝐶∗) properties. 

 

Theorem 2.4.2: [13]. 

Let  𝑈 ∈ 𝐵(𝐻) . The following statements are 

equivalent: 

i. 𝑈 is unitary 

ii. 𝑈  is bijective and 〈𝑈𝑥, 𝑈𝑦〉 = 〈𝑥, 𝑦〉  for every 

𝑥, 𝑦 ∈ ℋ 

iii. 𝑈 surjective and  isometric ‖𝑈𝑥‖ = ‖𝑥‖. 

 

Theorem 2.4.3: [13]. 

Let  𝑃 ∈ 𝐵(𝐻). Then the following are equivalent: 

a) 𝑃 is a projection  

b) 𝐼 − 𝑃 is a projection 

c) 𝑃2 = 𝑃 and is  self adjoint 

d) 𝑃2 = 𝑃 and 𝑃 is normal 

 

Proposition 2.4.4: [9].  

(The polarization identity). Let 𝑆 be a sesquiliear form 

and let 𝑞(𝑥) = 𝑆(𝑥, 𝑥)  then  𝑆(𝑥, 𝑦) =
1

4
[𝑞(𝑥 + 𝑦) −

𝑞(𝑥 − 𝑦) + 𝑖𝑞(𝑥 − 𝑖𝑦) − 𝑖𝑞(𝑥 + 𝑖𝑦)]. 

 

Theorem 2.4.5: (Projection). [13]. 

Let 𝑀 be a closed linear subspace of Hilbert space ℋ. 

Then every 𝑎 ∈ ℋ can be uniquely written as 𝑎 = 𝑎∥ +

𝑎⊥  with  𝑎∥ ∈ 𝑀  and 𝑎⊥ ∈ 𝑀⊥  and ℋ = 𝑀⨁𝑀⊥  where 

𝑀⊥ is the orthogonal complement of 𝑀. 

 

Theorem 2.4.6: [16]. 

Let 𝑀  be a closed subspace of ℋ . Let {𝑒𝑖: 𝑖 ∈ 𝐼}  be 

any orthonormal bais for 𝑀  and let {𝑒𝑗: 𝑗 ∈ 𝐽}be any 

orthonormal set such that {𝑒𝑖: 𝐼 ∪ 𝐽}  is orthonormal 

basis for ℋ. Then the index 𝐼 and 𝐽 are disjoint then 

the following conditions on vector 𝑥 ∈ ℋ  are 

equivalent 

𝑥 ⊥ 𝑦   ∀ 𝑦 ∈ 𝑀 

𝑥 = ∑ 𝑥, 〈𝑥, 𝑒𝑗〉𝑒𝑗𝑗∈𝐽 . 

 

 

 

 

Theorem 2.4.7: [6]. 

 (Parallelogram identity). Let 𝐸  be a normed space. 

Then there is an inner product on 𝐸 which gives rise to 

the norm iff the parallelogram identity  

‖𝑥 + 𝑦‖² + ‖𝑥 − 𝑦‖² = 2‖𝑥‖² + 2‖𝑦‖²  is satisfied for 

all 𝑥, 𝑦 ∈ 𝐸. 

 

Theorem 2.4.8: [13]. 

The product of two normal operators is itself normal if 

and only if the operators commute. 

 

Theorem 2.4.9: [6]. 

If 𝑇 is self adjoint operator on Hilbert space ℋ  then 

‖𝑇‖ = 𝑠𝑢𝑝|〈𝑇𝑥, 𝑥〉|: ‖𝑥‖ = 1 

 

Remark 2.4.10 

For the sake of further reference, the proofs for 

theorems (2.4.11), (2.4.12) (2.4.13) are provided. 

 

Theorem 2.4.11: [13]. 

If 𝑇  is idempotent self adjoint operator then 𝑇  is a 

projection of 𝑀 = 𝑥 ∈ ℋ:𝑇𝑥 = 𝑥 

Proof 

Let 𝑍 ∈ ℋ and write it as  𝑍 = 𝑇𝑍 + (𝑍 − 𝑇𝑍) 

𝑇(𝑇𝑍 = 𝑇𝑍) so 𝑇𝑍 ∈ 𝑀  and 𝑍 − 𝑇𝑍 ∈ 𝑀⊥.  

If 𝑥 ∈ 𝑀 , then 〈𝑥, 𝑍 − 𝑇𝑍〉 = 〈𝑥, 𝑍〉 − 〈𝑥, 𝑇𝑍〉 = 〈𝑥, 𝑍〉 −

〈𝑇𝑥, 𝑍〉 = 0.                           ∎ 

 

Theorem 2.4.12: [1]. 

If 𝑃 is a nonzero orthogonal projection, then ‖𝑃‖ = 1 

Proof 

If 𝑥 ∈ ℋ  and 𝑃𝑥 ≠ 0 , then the use of the Cauchy-

Schwarz inequality implies that 
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‖𝑃𝑥‖ =
〈𝑃𝑥, 𝑃𝑥〉

‖𝑃𝑥‖
=

〈𝑥, 𝑃²𝑥〉

‖𝑃𝑥‖
=

〈𝑥, 𝑃𝑥〉

‖𝑃𝑥‖
≤ ‖𝑥‖ 

‖𝑃𝑥‖ ≤ 1  . If 𝑃 ≠ 0 , then there is an  𝑥 ∈ ℋ  with 

𝑃𝑥 ≠ 0 and ‖𝑃(𝑃𝑥)‖ = ‖𝑃𝑥‖ thus ‖𝑃‖ ≥ 1.  

       ∎ 

 

Proposition 2.4.13: [4] 

Suppose that 𝑇  is a bounded linear operator on a 

separable Hilbert space ℋ  such that there is an 

orthonormal {𝑒𝑛}𝑛=1
∞ ∶ ∑ ‖𝑇𝑒𝑛‖² < ∞∞

𝑛=1  for any 

orthogonormal basis {𝑓𝑛}𝑛=1
∞  sch that ∑ ‖𝑇𝑓𝑛‖² =∞

𝑛=1

∑ ‖𝑇𝑒𝑛‖²
∞
𝑛=1 . 

 

Theorem 2.4.14: [3]. 

(Fixed Point Theorem) 

 Let (𝑋, 𝑑) be a complete metric space and  𝑓: 𝑋 → 𝑋 

be a map such that 𝑑(𝑓(𝑥), 𝑓(𝑥ˌ)) ≤ 𝑐𝑑(, 𝑥ˌ) for some 

0 < 𝑐 < 1  and for all 𝑥, 𝑥ˌ ∈ 𝑋 . Then f has a unique 

fixed point in X. Moreover, for any 𝑥0 ∈ 𝑋 . The 

sequence iterates 𝑥0, 𝑓(𝑥0), 𝑓(𝑓(𝑥0)), , , , ,, converges to 

the fixed point of 𝑓(𝑥).  

Where  𝑑(𝑓(𝑥), 𝑓(𝑥ˌ)) ≤ 𝑐𝑑(𝑥, 𝑥ˌ) , then 𝑓(𝑥)  is called 

contraction. 

 

Theorem 2.4.15: [12]. 

If 𝐵 is any bounded operator and if 𝐴 is normal and 

not necessarily bounded and if 𝐵𝐴 ⊂ 𝐴𝐵  then 

𝐵𝐴∗ ⊂ 𝐴∗𝐵. 

Proof  

This proof follows from disjoint the Borel sets of 

complex plane given as 

𝑄 = 𝐾(∝1)𝐵𝐾(∝2) = 0 

𝐾(∝1) denotes the projection operator with Borel set ∝ 

by spectral family 𝐾𝑧. 

Suppose ∝1 and ∝2 are bounded then 

𝐵∫
∝2

𝑍𝑑𝐾𝑧𝑥 = 𝐴𝐵𝐾(∝2)𝑥 

Applying the operator 𝐾(∝1), we obtain 

                                         𝐾(∝1)𝐵∫
∝2

𝑍𝑑𝐾𝑧 =

∫
∝1

𝑍𝑑𝐾𝑧𝐵𝐾 ∝2 . 

If 𝑧1  and 𝑧2  are arbitrary numbers in ∝1  and ∝2 

respectively, then the above equation can be written 

as  

∫
∝1

(𝑍 − 𝑍1)𝑑𝐾𝑧𝑄 = 𝑄∫
∝2

(𝑍 − 𝑍2)𝑑𝐾𝑧 + (𝑍2 − 𝑍1)𝑄 

Let ∝ denote any Borel set then  

𝐾(∝)𝐵 = 𝐾(∝)𝐵𝐼 = 𝐾(∝)𝐵(𝐾(∝)) + 𝐾(∝ ˊ)

= 𝐾(∝)𝐵𝐾(∝) 

∝ ˊis the compement of ∝. Similary,    

𝐵𝐾(∝) = 𝐾(∝)𝐵(𝐾(∝)) 

therefore,    𝐾(∝)𝐵 = 𝐵𝐾(∝).  

This implies that 𝐵𝐴∗ ⊂ 𝐴∗𝐵                  ∎ 

 

Remark 2.4.16 

The above properties and theorems of Hilbert space 

shall be used in the derivation and study of 

applications of the Schrödinger equation using Hilbert 

space approach.   

 

III. MAIN RESULTS: THE SCHRODINGER 

EQUATION AND HILBERT SPACE OPERATORS 

 

3.1. Electromagnetic Wave Theory and 

Einstein Theory of Relativity in Correlation 

with Operators in Hilbert Space 

 

This section deals with the correlation of Hilbert space 

operators with electromagnetic wave equation. The 

solutions are obtained from the properties of Hilbert 

space operator as well as the existing derivation of 

electromagnetic wave equation from the existing 

literature in section 2.1.  

We have also described the correlation of Einstein 

theory of relativity with Hilbert space operators using 

the existing literature in section 2.2 and properties of 

Hilbert space operators. 

 

3.1.1. Correlation between Hilbert Space 

Operators and Electromagnetic Wave 

Function Theory 

 
We recall that a Hilbert Space is a complete inner 

product space. Dirac invented an alternative for inner 

product that leads to bras ⟨.|and kets|. ⟩ [14]. That is,  
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〈𝑥, 𝑦〉 → ⟨𝑥|𝑦⟩ 

Bra-kets have the following properties 

i. ⟨𝑥|𝑦⟩ = 0 if both 𝑥 and 𝑦 are orthogonal 

ii. ⟨𝑥|𝑥⟩ = 0 iff 𝑥 = 0 (null property) 

iii. ⟨𝑥|𝑥⟩ ≥ 0 = ‖𝑥‖² 

iv. ⟨𝑥|𝑎𝑦 + 𝑏𝑧⟩ = 𝑎⟨𝑥|𝑦⟩ + 𝑏⟨𝑥|𝑧⟩. 

 

Properties of dot product are similar to that of inner 

product. They include: 

i. 𝑥. 𝑥 = |𝑥|² 

ii. 𝑥. 𝑦 = 𝑦. 𝑥 

iii. 𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐 

iv. 𝑒𝑎. 𝑏 = 𝑒(𝑎. 𝑏) = 𝑎(𝑒𝑏)  for e is a scalar 

and 𝑎, 𝑏, 𝑐 are vectors. 

Electromagnetic waves are electric and magnetic 

waves that travel perpendicular to each other. By [21], 

these waves are orthogonal and can be represented 

as (〈𝐸, 𝐵〉 = 0). They have Amplitude, Wavelength and 

Frequency. 

Electromagnetic wave equation is a second order 

partial differential equation which describes 

electromagnetic waves through a medium or a 

vacuum. The vector differential operator is given as 

∇⃗⃗ =
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�                                        (3.1) 

Maxwell equations describe the world of 

electromagnetic, that is, how electric and magnetic 

field interact. Applying the properties of Hilbert space 

on Maxwell equations, they can be represented as 

follows; 

〈∇⃗⃗  . �⃗� 〉 = 0 (Gauss’ law of electricity)                                    

(3.2a) 

〈∇⃗⃗  . �⃗� 〉 = 0  (Gauss law of magnetism                (3.2b) 

∇x�⃗� = −
𝜕�⃗� 

𝜕𝑡
 (Faraday’s law induction)             (3.2c) 

∇x�⃗� = 𝜇0𝜀0
𝜕�⃗� 

𝜕𝑡
 (Ampere’s law)                      (3.2d)       

In this derivation, we used the procedure used by [19] 

but applying properties of Hilbert space operators.                                                                                                                       

For non-conducting media, or in a vacuum, there are 

no sources and hence, 

𝜌 = 0, 𝑎𝑛𝑑 𝜎 = 0 

Where 𝜇 𝑎𝑛𝑑 𝜀 are permeability and permittivity of free 

space respectively. 

Since ∇⃗⃗  and �⃗�  are both vectors, the Maxwell equation 

(3.2a) can be written as; 

                   〈∇⃗⃗ , �⃗� 〉 = 0                                              

(3.3) 

Taking the curl of Faraday's law (equation 3.2c) 

becomes, 

�⃗�  × (�⃗�  × �⃗⃗� ) = −
𝜕(�⃗⃗�  ×�⃗⃗� )

𝜕𝑡
                               (3.4)   

Considering the left hand side of equation (3.4) we 

have      

   �⃗�  × (�⃗�  ×  �⃗⃗� )   = 〈∇,⃗⃗⃗  〈∇⃗⃗ , �⃗� 〉〉 − 〈�⃗� , 〈∇⃗⃗ , ∇⃗⃗ 〉〉                   

(3.5) 

From property (iii) of inner product equation (3.5) 

becomes 

�⃗�  × (�⃗�  × �⃗⃗� ) = 〈∇,⃗⃗⃗  〈∇⃗⃗ , �⃗� 〉〉 − 〈〈∇, ∇〉, �⃗� 〉                (3.6) 

By, the first of Maxwell equation, equation (3.2a) tells 

us that 〈∇, �⃗� 〉= 0 in vacuum. Therefore, 

�⃗�  × (�⃗�  × �⃗⃗� ) = −〈∇2, �⃗� 〉                          (3.7) 

 Considering the right hand side of equation (3.4),  
𝜕(�⃗⃗�  ×�⃗⃗� )

𝜕𝑡
, substituting the Ampere’s law for a charge and 

current-free region we have 

𝜕(�⃗⃗�  ×�⃗⃗� )

𝜕𝑡
=

𝜕

𝜕𝑡
𝜇0𝜀0

𝜕�⃗� 

𝜕𝑡
= 𝜇0𝜀0

𝜕2�⃗� 

𝜕𝑡2                   (3.8) 

Hence using equations (3.4) and (3.8) we obtain, 

〈〈𝛁, 𝛁〉, �⃗⃗� 〉 = −
1

〈𝑐,𝑐〉

𝜕2�⃗⃗� 

𝜕𝑡2                    (3.9) 

We find that each component of the electric field 

satisfies equation (3.9) which is the derived wave 

equation using properties of inner product. The 

quantity c is defined as the speed of the wave and 

𝜇0𝜀0 =
1

〈𝑐,𝑐〉
 or 𝑐 =

1

√𝜇0𝜀0
. 
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3.1.1. Correlation between Hilbert Space 

Operators and Einstein Theory of 

Relativity 

 

Einstein relativistic expressions can be derived 

starting from the relativity principle and the classical 

Lorentz's law (Hamdan et al., 2007) as shown in 

equation (3.10) 

𝐹 = 𝑞(�⃗� + 𝑣  × �⃗� )                             (3.10) 

where, 

𝑞- charged particle 

𝑣  - velocity of the particle 

�⃗�  - electric field and 

�⃗�  - magnetic field flux density. 

In this work, Einstein theory of relativity is derived 

following the procedure by Hamdan et al., (2007) but 

using properties of Hilbert space operator. 

Since 𝑞 is a scalar quantity and 𝐹 , �⃗�  and 𝑣  are vectors 

quantities, applying property, the Cartesian 

components of equation  (3.10) are given by  

  𝐹𝑥 = 𝑞𝐸𝑥 + 𝑞〈𝑣𝑦, 𝐵𝑧〉 − 𝑞〈𝑣𝑧, 𝐵𝑦〉                   (3.11a) 

𝐹𝑦 = 𝑞𝐸𝑦 + 𝑞〈𝑣𝑧, 𝐵𝑥〉 − 𝑞〈𝑣𝑥, 𝐵𝑧〉                   (3.11b) 

𝐹𝑧 = 𝑞𝐸𝑧 + 〈𝑣𝑥, 𝐵𝑦〉 − 〈𝑣𝑦, 𝐵𝑥〉                       (3.11c) 

Applying relativity principles on equations (3.11a), 

(3.11b) and (3.11c), we obtain 

𝐹ˊ𝑥 = 𝑞𝐸ˊ𝑥 + 〈𝑣ˊ𝑦, 𝐵ˊ𝑧〉 − 〈𝑣ˊ𝑧, 𝐵ˊ𝑦〉                (3.12a) 

𝐹ˊ𝑦 = 𝑞𝐸ˊ𝑦 + 〈𝑣ˊ𝑧, 𝐵ˊ𝑥〉 − 〈𝑣ˊ𝑥, 𝐵ˊ𝑧〉                (3.12b) 

𝐹ˊ𝑧 = 𝑞𝐸ˊ𝑧 + 〈𝑣ˊ𝑥, 𝐵ˊ𝑦〉 − 〈𝑣ˊ𝑦, 𝐵ˊ𝑥〉                (3.12c)  

In the derivation of relativistic energy, the 3-vector 

relativistic velocity transformation is necessary. 

According to [8], the relativistic velocity equations but 

applying the properties of inner product can be written 

as 

𝑣ˊ𝑥 =
𝑣𝑥−𝑢

1−
〈𝑣𝑥,𝑢〉

〈𝑐,𝑐〉

                             (3.13a)                              

𝑣ˊ𝑦 =
𝑣𝑦

𝛾(1−
〈𝑢,𝑣𝑥〉

〈𝑐,𝑐〉
)
                        (3.13b) 

𝑣′𝑧 =
𝑣𝑧

𝛾(1−
〈𝑢,𝑣𝑥〉

〈𝑐,𝑐〉
)
                        (3.13c) 

where scalar factor 𝛾 is fixed by applying the relativity 

principle    𝛾 =
1

√1−
〈𝑢,𝑢〉

〈𝑐,𝑐〉

 . 

 

In classical physics, a particle with rest mass 𝑚0 with 

velocity 𝑣 has a momentum of 𝑝 = 𝑚0𝑣 and a kinetic 

energy of 𝑇 =
1

2
𝑚0𝑣² and in relativistic physics,  

𝑝 =
𝑚0𝑣

√1−
〈𝑣,𝑣〉

〈𝑐,𝑐〉

= 𝛾𝑚0𝑣 =  𝑚𝑣                                          

(3.14) 

Lets consider two inertial systems 𝑆  and 𝑆ˊ . The 

charged particle 𝑞  when viewed from 𝑆  the 

components of momentum are given by the following 

as stated by [18]. 

𝑝𝑥 = 𝑚𝑣𝑥                              (3.15a) 

𝑝𝑦 = 𝑚𝑣𝑦                             (3.15b) 

𝑝𝑧 = 𝑚𝑣𝑧                             (3.15c) 

When viewed from 𝑆ˊ, the momentum is given by 

𝑝ˊ𝑥 = 𝑚ˊ𝑣ˊ𝑥           (3.16a) 

𝑝ˊ𝑦 = 𝑚ˊ𝑣ˊ𝑦                 (3.16b) 

𝑝ˊ𝑧 = 𝑚ˊ𝑣ˊ𝑧                (3.16c) 

From 3.15(a), we have 

𝑣𝑥 =
𝑝𝑥

𝑚
                       (3.17) 

While from 3.16(a)                                          

𝑣ˊ𝑥 =
𝑝ˊ𝑥

𝑚ˊ
                      (3.18) 

Equating (3.18) and equation 3.13(a), we obtain 

𝑝ˊ𝑥

𝑚ˊ
=

𝑣𝑥−𝑢

1−
〈𝑢,𝑣𝑥〉

〈𝑐,𝑐〉

                    (3.19) 

Substituting equation (3.17) in (3.19), we obtain 

𝑝ˊ𝑥

𝑚ˊ
=

𝑝𝑥−𝑚𝑢

𝑚(1−
〈𝑢,𝑣𝑥〉

〈𝑐,𝑐〉
)
                                              (3.20) 

Observers of frame 𝑆  measures the rest mass 𝑚0 , 

observers from 𝑆ˊ  measure the mass 𝑚ˊ . Assuming 

the charged particle is at rest then 

                                                           𝑣𝑥 = 𝑢 = 0. 

Observers of frame 𝑆ˊ  measures the rest mass 𝑚0 , 

observers from 𝑆 measure the mass 𝑚. Assuming the 

charged particle is at rest then the component of 

momentum if combine 3.13(b), 3.15(b) and 3.16(b), 

we deduce 

𝑝ˊ𝑦 = 𝑚ˊ𝑣ˊ𝑦 = 𝑚𝑣𝑦 = 𝑝𝑦                           (2.21)  

 

In similar way, we get,  

𝑝ˊ𝑧 = 𝑚ˊ𝑣ˊ𝑧 = 𝑚𝑣𝑧 = 𝑝𝑧                           (3.22) 
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The relativistic mass in both frames is expressed as 

𝑚 =
𝑚0

√1−
〈𝑣,𝑣〉

〈𝑐,𝑐〉

                               (3.23) 

 

𝑚ˊ =
𝑚0

√1−
〈𝑣,𝑣〉

〈𝑐,𝑐〉

                              (3.24) 

Multiplying the equation for scalar factor 𝛾  by 

𝑚²0〈𝑐, 𝑐〉〈𝑐, 𝑐〉, we obtain  

 

𝛾√1 −
𝑢²

𝑐²
(𝑚²0〈𝑐, 𝑐〉〈𝑐, 𝑐〉) = 𝑚²0〈𝑐, 𝑐〉〈𝑐, 𝑐〉                

(3.25) 

 

〈𝑐, 𝑐〉〈𝑐, 𝑐〉𝛾2𝑚2
0 − 〈𝑐, 𝑐〉𝛾2𝑚2

0〈𝑣, 𝑣〉 = 𝑚2
0〈𝑐, 𝑐〉〈𝑐, 𝑐〉 

 

= 𝛾²𝑚²0〈𝑐, 𝑐〉〈𝑐, 𝑐〉 − 𝛾²𝑚²0〈𝑢, 𝑢〉〈𝑐, 𝑐〉 = 𝑚²0〈𝑐, 𝑐〉〈𝑐, 𝑐〉               

(3.26) 

It is noted that 

〈𝑝, 𝑝〉 = 𝛾²(𝑚²0〈𝑢, 𝑢〉) = 𝑚²〈𝑣, 𝑣〉                        (3.27) 

 

The root for the first term presented is 

𝜀 = 𝑚〈𝑐, 𝑐〉√1 −
〈𝑣,𝑣〉

〈𝑐,𝑐〉
= 𝛾𝑚0〈𝑐, 𝑐〉 = 𝑚〈𝑐, 𝑐〉    (3.28) 

Equation (3.28) is the relativistic energy 𝜀, telling us 

that the change of mass of a particle is accompanied 

by change in its energy and vice versa. 

Therefore, 

      𝜀2 = 〈𝑐, 𝑐〉〈𝑝, 𝑝〉 + 𝑚²0〈𝑐, 𝑐〉〈𝑐, 𝑐〉                      

(3.29) ∎ 

This is the derived equation for relativistic energy. It 

which that shall be used in the derivation Schrödinger 

equation using of Hilbert space operators. 

 

3.1.1. The Derivation of Schrodinger 

Equation using Hilbert Space Operators 

 

The results obtained in section 3.1.1 and 3.1.2 are 

utilized in the derivation of Schrödinger equation using 

Hilbert space approach. 

[20] dealt with the derivation of Schrödinger equation 

using electromagnetic wave equation and Einstein’s 

theory of relativity knowledge. They further extended 

the wave equation for classical fields to photons and 

generalized it to non-zero rest mass particles using 

approximations consistent with non-relativistic 

particles. In this research, we use the same approach 

as used by [20] but applying the properties of Hilbert 

space operators. 

Equation (3.9) obtain from the derivation of 

electromagnetic wave equation can be written as 

〈〈∇, ∇〉, �⃗⃗� 〉 −
1

𝐶2

𝜕2�⃗⃗� 

𝜕𝑡2 = 0                                                      (3.30) 

This satisfies,  

𝐸(𝑡, 𝑥) = 𝐸0𝑒
𝑖(𝑘𝑥−𝜔𝑡)                                 (3.31)   

where 𝑘 =
2𝜋

𝜆
 and 𝜔 = 2𝜋𝜐  are spatial and temporal 

frequencies respectively. Substituting equation (3.31) 

in (3.30) we obtained 

(〈〈∇𝑥, ∇𝑥〉, 𝐸0〉 −
1

𝑐2

𝜕2

𝜕𝑡2) 𝐸0𝑒
𝑖(𝑘𝑥−𝜔𝑡) = 0                       

(3.32)      

In a vacuum, the speed of light is given as 𝑐 = 𝜈𝜆, a 

wave propagation speed and 𝑘 =
𝜔

𝑐
. From Einstein 

and Compton, the energy of photon is 𝜀 = ℎ𝜐 = ℏ𝜔 

and the momentum of photon is 𝑝 =
ℎ

𝜆
= ℏ𝑘. 

Therefore equation (3.31) is written as 

𝐸(𝑥, 𝑡) = 𝐸0𝑒
𝑖

ℏ
(𝑝𝑥−ℇ𝑡)                                                          

(3.33)  

Substituting equation (3.33) in (3.32) we obtain,  

(〈〈∇𝑥, ∇𝑥〉, 𝐸0〉 −
1

〈𝑐,𝑐〉

𝜕2

𝜕𝑡2)𝐸0𝑒
𝑖

ℏ
(𝑝𝑥−ℇ𝑡) = 0           (3.34) 

 

Differentiating equation 3.34 

−
1

ℎ2 (〈〈𝑝, 𝑝〉, 𝐸0〉 + 𝜀2 〈
1

〈𝑐,𝑐〉
, 𝐸0〉) 𝑒

𝑖

ℎ
(𝑝𝑥−𝜀𝑡) = 0           

(3.35) 

Since 𝐸,Ψ ∈ 𝑆 , where 𝑆  is a vector space, then 

replacing electric field,  𝐸  with Ψ, the wave function 

equation (3.31) in term of wave function can be written 

as, 

Ψ(𝑥, 𝑡) = Ψ0𝑒
𝑖

 ℏ
(𝑝𝑥−ℇ𝑡)                 (3.36)  

Therefore equation (3.35) becomes  
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−
1

ℎ2 (〈𝑝2, Ψ0〉 − 𝜀2 〈
1

𝑐2 , Ψ0〉 + 𝑚2〈𝑐4, Ψ〉) 𝑒
𝑖

ℎ
(𝑝𝑥−𝜀𝑡) = 0         

(3.37)   

Now, the relativistic total energy obtained from the 

results in section 3.1.2 is given as  

𝜀2 = 〈𝑝, 𝑝〉〈𝑐, 𝑐〉 + 𝑚²〈𝑐, 𝑐〉〈𝑐, 𝑐〉 

Therefore, 

𝜀 = 𝑚〈𝑐, 𝑐〉√1 +
〈𝑝,𝑝〉

𝑚²〈𝑐,𝑐〉
                                 (3.38) 

≃ 𝑚〈𝑐, 𝑐〉 (1 +
〈𝑝, 𝑝〉

2𝑚²〈𝑐, 𝑐〉
) 

      ≃ 𝑚𝑐2 +
〈𝑝,𝑝〉

2𝑚2〈𝑐,𝑐〉
= 𝑚〈𝑐, 𝑐〉 + Ʈ                         (3.39) 

where Ʈ is the classical kinetic energy.  

Thus equation (3.36) becomes  

Ψ(𝑥, 𝑡) = Ψ0𝑒
𝑖

ℏ
(𝑝𝑥−𝑚𝑐2𝑡−Ʈ𝑡)                               (3.40) 

= 𝑒−
𝑖

ℏ
𝑚𝑐²𝑡Ψ0𝑒

𝑖

ℎ
(𝑝𝑥−Ʈ𝑡)

                           (3.41) 

Taking  Ψ0𝑒
𝑖

ℎ
(𝑝𝑥−Ʈ𝑡) = Φ then,  

Ψ(𝑥, 𝑡) = 𝑒−
𝑖

ℏ
𝑚𝑐²𝑡Φ                                           (3.42) 

On differentiating equation (3.42) with respect to 𝑡we 

obtain, 

∂Ψ

∂t
= −

𝑚

ℏ
〈〈𝑐, 𝑐〉, Φ〉𝑒−

𝑖

ℏ
𝑚〈𝑐,𝑐〉𝑡 + 𝑒−

𝑖

ℏ
𝑚〈𝑐,𝑐〉𝑡 ∂Φ

∂t
             

(3.43) 

 

Carrying out the second derivative of equation 3.43 

we have 

∂²Ψ

∂t²
=

(−
𝑚2

ℏ2 𝑒−
𝑖

ℏ
𝑚𝑐2𝑡〈〈𝑐, 𝑐〉〈𝑐, 𝑐〉, Φ〉 −

2𝑖

ℏ
𝑒−

𝑖

ℏ
𝑚〈𝑐,𝑐〉𝑡𝑚〈𝑐, 𝑐〉

∂Φ

∂t
) +

𝑒−
𝑖

ℏ
𝑚〈𝑐,𝑐〉𝑡 ∂²Φ

∂t²
(3.44) 

The term 𝑒−
𝑖

ℏ
𝑚〈𝑐,𝑐〉𝑡 ∂²Φ

∂t²
    is very small therefore it can 

be discarded. The term in brackets is very large thus, 

using this approximation in the Klein-Gordon equation 

we obtain 

𝑒−
𝑖

ℏ
𝑚𝑐2𝑡 [〈〈∇, ∇〉,Φ〉 +

2𝑖𝑚

ℏ

∂Φ

∂t
] = 0                                    

(3.45) 

〈〈∇, ∇〉, Φ〉 +
2𝑖𝑚

ℏ

𝜕

𝜕𝑡
Φ = 0                                   (3.46) 

Therefore equation (3.46) is the derived Schrödinger 

   equation for free particle which can be written as 

−ℏ²

2𝑚
〈〈∇, ∇〉, Φ〉 = 𝑖ℏ

𝜕

𝜕𝑡
Φ                          (3.47)  

   where Φ is the non-relativistic wave function. 
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