
 
 
 
 
 
GENERAL OVERVIEW OF SAMPLE SIZE ESTIMATION FOR RANDOMIZED 

CONTROLLED CLINICAL TRIALS 
 

Obare, D.M.*, Gladys G. Njoroge, and Muraya, M.M. 

Department of Physical Sciences, Chuka University, P. O. Box 109-60400, Chuka, Kenya Corresponding 

author email: obaredominic87@gmail.com  
moses.muraya@chuka.ac.ke 

 
How to cite:  
Obare, D. M., Njoroge, G. G. and Muraya, M. M. (2021). General overview of sample size estimation for randomized controlled 

clinical trials. In: Isutsa, D. K. (Ed.). Proceedings of the 7
th

 International Research Conference held in Chuka University from 3rd to 

4
th

 December 2020, Chuka, Kenya, p. 537-546 
 
 
 
ABSTRACT  
Calculation of the minimum sample size needed to meet the primary study objective is a key feature of the design of 

any clinical trial. The other reason a priori sample size determination is to limit participant harm or loss of clinical 

benefit to as few study participants as possible. This article generally reviews the basic principles that determine an 

appropriate sample size and provides methods for its calculation in some simple, yet common, cases. Sample size is 

closely tied to statistical power, which is the ability of a study to enable detection of a statistically significant difference 

when there truly is one. A trade-off exists between a feasible sample size and adequate statistical power. Keywords: 

Clinical trial, Sample size, Statistical power, Randomization, Review, Participant. 

 
INTRODUCTION  
The clinical trial is the most definitive tool for evaluation of the applicability of a clinical research. It represents “a key 

research activity with the potential to improve the quality of health care and control costs through careful comparison of 

alternative treatments (Freiman, Chalmers, Smith and Kuebler, 1978). A properly planned and executed clinical trial is 

the best experimental technique for assessing the effectiveness of an intervention. It also contributes to the identification 

of possible harms (Friedman et al., 2015). Clinical trials are voluntary prospective studies conducted in human beings 

and designed to answer specific questions about the safety or effectiveness of drugs, vaccines, other therapies or new 

interventions (Society for clinical trials, 2006). 

 
A proper and sufficiently large randomized clinical trials are the best way to ascertain which interventions are effective 

and safe in order to improve public health (Pezzullo, 2014). To determine the correct number of participants to involve 

is key to a meaningful clinical trial. A large number of participants will make a clinical trial unfeasible while a small 

number will make the trial have a very low statistical power and its findings will be considered of less impact or the 

intervention is not effective. To avoid this challenge a researcher needs to determine the correct number of participants 

to be recruited in a clinical trial. The number of participants in a clinical trial is known as the sample or the study 

population (Friedman et al., 2015). The study population is determined in the planning phase when developing the study 

protocol. This is important since, in claiming an intervention is or is not effective it is essential to describe the type of 

participants on which the intervention will be tested. These includes, specification of criteria for eligibility and 

description of who actually should be enrolled. 

 
In reporting and assessing the findings of a clinical trial the researcher needs to say what population was studied and how they 

were selected. This is because, (1) if an intervention is shown to be successful or unsuccessful, the medical and scientific 

communities must know to what population the findings refer (Campbell et al., 1995), (ii) knowledge of the study population 

helps other investigators asses the study’s merit and appropriateness (Warner, 1995), (iii) in order for other investigators to be 

able to replicate the study, they need data descriptive of those enrolled. However, this paper does not discuss into detail all 

aspects of the study population in clinical trials. Well elaborate description and other details of study population can be 

obtained from (Duley & Farrell, 2002, Cleophas et al., 2013, Friedman et al., 2015, Piantadosi, 2017). The scope of this paper 

is limited to general statistical methods used to estimate sample size in randomized clinical trials. It brings together different 

statistical methods that have been utilized to estimate sample sizes in clinical trials. It  
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highlights the shortcomings of these methods in estimating the sample size for clinical trials. This paper focuses only on 
estimation of sample size of clinical trials with single primary response variable, multiple primary response variables. 

 

DISCUSSION  
The size of the study should be considered early in the planning phase when laying down the study protocol. In most 

cases, no formal sample size is determined. The number of participants available to the investigators during a particular 

period of time will dictate the size of the study. If the study requires more participants, enrollment continues as the 

follow-up continues. If clinical trials do not consider the sample size requirements, they turn out to lack the statistical 

power or ability to prove that intervention effects are of clinical importance. 
 
In a review of 71 published randomized “negative” controlled clinical trials by Freaman and colleagues in 1978. It found 

out that 67 of the trials had greater than 10% risk of missing a true 25% therapeutic improvement, and with the same 
risk, 50 of the trials could have missed a 50% improvement. Estimates of 90% confidence intervals for the true 

improvements in each trial showed that in 57 of these “negative” trials a potential of 25% improvement was possible, 

and 34 of the trials showed a potential of 50% improvement. This was attributed to small sample sizes and needs more 
attention in the planning of clinical trials (Freiman, Chalmers, Smith and Kuebler, 1978). 

 

This situation remained the same even in 1994, 383 randomized controlled trials(RCTS) with negative results were 

reviewed on the basis of the power to detect 25% and 50% relative difference. 27% were classified as having negative 

results. Only 16% and 36% hard sufficient statistical power. In general, only 32% of the trials with negative results 

reported sample size estimation. Most trials with negative results did not have large enough sizes to detect a 25% or 

50% relative difference (Moher et al., 1994). The danger that underlies this trend of conducting unethical underpowered 

clinical trials is that interventions that could be beneficial are discarded without adequate testing and may never be 

considered again (Friedman et al., 2015). Hitherto, many studies do contain appropriate sample size estimates, however, 

after many years of critical review majority are still too small (Chan AW, & Altman DG. 2005, Halpern SD, Karlawish 

JH, & Berlin JA, 2002, Friedman et al., 2015). 

 

Basic Statistical Theory  
In order to understand how to determine a meaningful sample size for clinical trials, there are basic fundamental 
principles we need to familiarize with. These include hypothesis testing, significance level and statistical power 

(Gueyffier & Boissel, 1998, Jia & Lynn, 2015, Gong et al., 2000, Fisher & Belle, 1997). This will be helpful to those 
with no background of the basic statistical concepts. 

 

Clinical trials can be of one intervention group and one control group (Friedman et al.,2015, Day SJ& Graham DF, 

1991). In estimating the sample size for clinical trials, the primary response variable used to judge the effectiveness of 

intervention should be identified. A primary response corresponds to a primary question that the investigators and 

sponsors are most interested in answering. The investigators can focus on a single primary response variable or multiple 

responses, this largely depends on what the investigators are interested in and the complexity of the clinical trial. The 

sample size largely is based on the primary questions and their corresponding responses (Cutler et al., 1966, Friedman et 

al., 2015). Generally, there are 3 different responses or outcomes; (i) dichotomous/binary response variable (ii) 

continuous response variable and (iii) time to failure/occurrence of a clinical event (Koch et al., 2015). 

 

Single Primary Response Variable.  
The single primary response variable is an outcome obtained at the end of the follow-up of a clinical trial (Clarke, 2007, 

Donner, 1984). These single primary responses can either be dichotomous, continuous or time to failure (survival) 

responses. For the dichotomous response variables, let the event rates in the intervention group be ( PI ) and the control 

group be ( PC ) . For the continuous responses let the true but unknown mean level in the intervention group be (I ) 

and the mean level in the control group be (C ). For survival rate outcomes the hazard rate ( ) is often used as an event rate estimator (Donner 1984, Friedman et al., 2015). 

 

Researchers and investigators do not know the true values of the event rates. Clinical trials give only estimates of the  
^ ^   

event rates, P and  P 
C 

. The investigator in a clinical trial is only interested with whether or not a true difference 
I   

 
exists between the event rates of participants in the two or multiple groups. Conventionally, this is done through the  
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null  hypothesis,  denoted  as HO ;  which  states  that  no  difference  exists  between  the  true  event  rates.  The 
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investigator needs to test HO and decide whether to reject it or not. The null hypothesis is assumed to be true 

until proven otherwise. (Schneider, 1981). 

 
If the event rates in a clinical trial analysis are large enough by chance alone, then it means the investigator might reject 
the null hypothesis incorrectly. This is known as false positive finding or Type I error. This error should be 
 
controlled or minimized as far as possible. The probability of Type I error is known as the significance level, 

denoted as α. Given HO is true, there is the probability of observing differences as large as or large than the 

 

difference known as “P-value” normally denoted as . The statistical decision is reject HO , if ≤α. α is chosen 

 
arbitrarily, the ones used and accepted in the literature are 1%, 2.5% and 5%. (Schneider, 1981, Blackwelder, 
1981, Giangregorio & Cook, 2009, Ng, 1995). 
 

When the null hypothesis is not true, then another hypothesis called the alternative hypothesis, denoted by HA 
 
must be true. The true difference between the event rates is a value δ ≠ 0. Sometimes the observed difference 
between event rates can be very small by chance alone even if the alternative hypothesis is true. Due to this small 

observed differences, the researcher could fail to reject the  HO even when it is not true. This will result to a Type 

II error, or a false negative. The probability of a type II error is denoted by . 1 − is the probability of correctly rejecting  
HO . 1 − is known as the statistical power of the study. The power gives the potential of the study to find the true differences of various 
values of δ (Gueyffier & Boissel, 1998, Ghosh, 2002 "Will my clinical study be a success? The Concept of Statistical Power", 2020). 

 

In controlled randomized clinical trials, it is assumed that randomization will allocate an equal number ( ) of participants 
to each group, that is intervention and control groups. This ensures a more powerful design than unequal allocation 
(Trachtman & Caplan, 2018). Equal allocation is usually easier to implement therefore it is more frequently used 

strategy because of its simplicity in the analysis (Hey & Kimmelman, 2020). 

 
From classical statistical theory, the researcher must make a decision if he is interested with differences in one direction 
only (one-sided test) or in differences in either direction (two-sided test). If one-sided test of hypothesis is chosen, 
mostly from the literature the significance level should be half of what the investigator would use for a two- sided test. 

For example, if 5% is the two-sided significance then, 2.5% would be used for the one-sided test. 
In a clinical trial the total sample size is 2 ( per arm). Clearly, the sample size estimation is a function of  δ, α and , 1  
− . Any change to either these parameters will result in a change in sample size 2 ( per arm). If δ decreases, then the sample size should be large enough to guarantee a high 
probability of finding the difference. If the calculated sample is unrealistically large than it can be obtained, then one or more of the parameters in the design may need to be re-adjusted.  

Since the significance level is usually fixed at 5%,2.5% or 1%, the researcher should reconsider the value selected for δ 
and increase it, or keep δ the same and settle for a less powerful study. If neither of these alternatives is satisfactory, 
serious consideration should be given to abandoning the trial (Cleophas et al., 2013, Clinical trials, 2020). 

 

Sample Size estimation for Dichotomous/Binary Response 

Variables Two Independent Samples  
The primary response variable is the occurrence of an event over some fixed period of time. The sample size calculation 

should be based on the specific test statistic that will be employed to compare the outcomes. The null hypothesis H0 (PC - 

PI =0) (no difference) is compared to an alternative hypothesis HA (PC - PI ≠ 0) (P, 2020). The 

 ^ ̂  ^  rI  ^    rC 
rI   and  rC 

 
estimates of PC and PI  are   P , P  respectively,  where P 

I 

=  and P 
C 

=   with being    

 I C   

N I 
  

N C 
  

           

the number of events in the intervention arm and control arm respectively while  NI and NC being the number of   
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participants in each group. The sample size required for the design to have a significance level α and a power of 1 − to detect true differences of at least δ between the event rates 
PI and PC can be expressed by the formula (Donner & Makuch, 1985, Friedman et al., 2015).   
   _ _ _  

 

_ _ 
     

         

N= [{Zα p (1 p) + Zβ C (1 pC ) PI (1 PI )} /( p2  p ) 2 ] [1] 
         C I     
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Where    = sample size per arm (participants/group) with p  1  },  Zα is the critical  value 
 


  

{ C p p I  2 
    

 
which corresponds to the significance level and Zβ is the value of the standard normal value not exceeded with probability β. Zβ corresponds to the power 1 − (e.g. if 1 − =0.90 Zβ 
=1.282 ). Values of Zα and Zβ are given in generated tables which can be downloaded from online resources (Rochon, 2005). 

 

When by N I NC   i.e. when the two arm groups are of equal size. An alternative to the above formula is given 

 

1 _ _  

2  = 

 
 [(+)2 p(1 p) /( p C

  pI )2  ] [2]  

2     

 
These two formulas give approximately the same answer and either may be used for the typical clinical. 

 
By a matter of fact, participants in clinical trials do not always fully adhere with the intervention being tested. Some fraction 

(RO) of participants on intervention drop-out of the intervention due to some reasons and some other fraction (RI) drop-in and 

start following the intervention. The assumption here is that, participants who drop-out respond as if they had been on control 

and those who drop-in respond as if they had been on intervention, then the sample size adjustment is the same as for the case 

of proportions. That is, the adjusted sample size N* is a function of the drop-out rate, the drop-in rate, and the sample size N 

for a study with fully compliant participants: (Friedman et al., 2015, Cleophas et al., 2013) 

N* = N/ (1-RO -RI)
2 

[3] 
 
Most of the methods in statistical estimation of sample size in clinical trials have not incorporated this aspect of drop-in 
and drop-out of participants. In this paper this aspect will be considered and it will be included in the final formula for 
estimation of the sample size. The two formulas above precisely should be as follows, [1] becomes:   
     _ _ _ 

 

 

 

_ _ 
    

           

   p (1 p) + Zβ 
 C (1 pC ) PI (1 PI )} /( p2  p ) 2 2 

N= [{Zα         ] /  (1-RO -RI) 

            C I   

And [2] becomes                

 
1 

    _ _      

2  = [(+)2 
p(1 p) /( p C


p I )

2
  ] /(1-RO -RI)2 

   
     

2    
               
 

Where (1-RO -RI)
2
 is the correction factor for drop in and drop-out of participants. 

 
Sample Size Estimation for Continuous Response 

Variables Two Independent Samples  
Continuous response variables include blood pressure, Spiro metric measures, neuropsychological scores, level of a 

serum component and length of hospitalization just to mention a few. These variables are measured during a clinical 
trial in order to provide data for statistical analysis. 
 

Let the primary response variable be denoted as x , is continuous with NI and NC  participantsrandomized to the 

 
intervention group and control group respectively. Let us assume that the variable is normally distributed with mean μ 

and variance σ
2
. True levels of and for the intervention and control groups are unknown, but it is assumed that σ

2
 is 

known. Normally, σ
2
 is unknown and must be estimated from some sample data. If the data set used is large enough, the 

estimate of σ
2
 can be used in place of the true σ

2
 (Chow, 2011). But this is not easy to evaluate hence it leaves 

investigators at crossroads on the efficacy of the estimates to be adopted. 
 

The null hypothesis is H0 : δ= μc- μi = 0 (no significant difference) and the two-sided alternative hypothesis is HA : 
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δ= μc- μi ≠ 0 (there is a difference) (Bristol, 1992). If the variance is known, the test statistic is:  

Z(XC    1 
[4] 

XI )/σ (1/ N C1/NI) 
2 

  



  
      
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Where  
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X I  and X C  represent mean levels observed in intervention and control arms (Friedman et al., 2015)  

The sample size can be estimated as  

N{    +Zβ )2 σ
2
  δ

2} /(1-RO -RI)
2 

[5]  
/  

Where the (1-RO -RI)
2
 is the correction factor for the drop-in and drop-out of participants. 

 
Paired Data  
In some clinical trials, paired outcome data may increase power for detecting differences because individual or within 

participant variation is reduced. Trial participants are normally assessed at baseline and at the end of follow- up. Let’s 

assume that ΔC and ΔI represent the true, but unknown levels of change from baseline to some later point in the trial for 

the control and intervention groups, respectively (Gauderman, 1992). 

 
Estimates of ΔC and ΔI would be  
       

d C = X 
C 1 

- CX and d  = X - IX. 

  2 I  I 1 2 
 
These represent the differences in mean levels of the response variable at two points for each group. The investigator 

tests H0: ΔC-ΔI = 0 against HA: ΔC - ΔI ≠ 0. Using δ and σ
2
 , as defined inΔ this manner, the previous sample size formula 

for two independent samples are applicable (Rosner, 1982). The total sample size per arm N can be estimated as 
(Yelland et al., 2017)  

N= { (Zα +Zβ)
2
 (1-ρ) σ

2
Δ /δ

2 } /(1-RO -RI)
2 

[6] 
 

Where the (1-RO -RI)
2
 is the correction factor for the drop-in and drop-out of participants (Friedman et al., 2015). 

 
Sample Size Estimation for Repeated Measures clinical trials  
These are clinical trials whose primary responses are a continuous response variable measured at each follow-up visit unlike the 
methods presented earlier that consider the sample size calculation for trials where only a baseline and a final visit are used to 
estimate the effect of intervention (Lu et al., 2008). This approach is useful in thinking about how many participants, how many 
responses per individual, and the time that they should be taken, are needed. We assume that the change in response variable is a 
linear function of time, then the rate of change is summarized by a slope. This model is fit to each participant’s data by the standard 
least squares method and the estimated slope is used to summarize the participant’s experience (Herring, 2013). The investigator must 
be concerned about the frequency of the measurement and the duration of the observation period. The observed measurement x can be 
expressed as = + + , where = , = , = , and error represents the deviation of the observed measurement from a regression line (Berlin 
& Ness, 1996, Chow & Liu, 2013). The error is due to measurement variability, biological variability or the nonlinearity of the true 
underlying relationship. The error is equally distributed around 0 and have a variability denoted 

as σ
2
 . Let us assume that σ

2
 is the same for every participant. The investigator will evaluate interventionerro effectiveness  

by comparingerro the average slope in one group with the average slope in another group. The slope variability reflects 

the effectiveness of the intervention or control. The amount of variability of slopes over participants is denoted as σ
2
 . 

b 

If D represents the total time duration for each participant and P represents the number of equally spaced measurements, 

σ
2 

can be expressed as:b  

σ
2 

σ
2
  {12(  -1)b= σ

2
 B   /(  2P(P+1))} [7] 

where σ
2
 is theB component of variance attributable to differences in participants’ slope as opposed to measurement error and 

lack of a linear fit (Friedman et al., 2015, Fairclough, 2010). The sample size required to detect difference δ between the 
average rates of change in the two groups is given by: 

= [4(Zα +Zβ)
2
/ δ

2
][ σ

2
  + {12( − 1) σ2 / (D

2
P+1))}]*  1 (1-RO -RI)

2
 [8] 
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B error  
2 

Where the (1-RO -RI)
2
 is the correction factor for the drop-in and drop-out of participants. 

 
Sample Size Estimation for “Time to Failure”  
In time to failure outcomes we employ life tables or survival analysis methods. Survival curves for the groups are compared to measure the effectiveness of an 
intervention. Non-parametric models are commonly used and this avoids any assumption on mathematical model of the survival curve. However, for sample size 
estimation, some assumptions are vital. We assume that the survival curve, S(t), follows an exponential distribution, ( ) = − =  
      (−    ) where λ is the hazard rate. Using this model, survival curves are totally characterized by λ. Thus, the survival curves from a control and an intervention group can be compared by testing 0: = . An 
estimate of λ is obtained as the inverse of the mean survival time. If the median survival time, TM, is known, the hazard rate λ may also be estimated by -ln (0.5)/TM. Sample size formulations have been 
considered by several investigators. One simple formula is given by Lachin, 1981.  
=2( + )2/[ ( / ]2 

where N is the size of the sample in each group (per arm) and Zα and Zβ are defined as above. 

 
The method just described above assumes that all participants will be followed to the event. Clinical trials with a 

survival outcome are terminated at time T before all participants have had an event. For those still event-free, the time to 
event is said to be censored at time T. (Lachin, 1981).  
For this situation, alternative formula is: = ( + )2 [ ( ) + ( )]/ ( − )2 Where ( ) = 2/(1 − − ) and where ( ) ( ) are defined by replacing λ with , respectively. 

 
Further models can be obtained in George & Desu, 1974 and Lachin, 1981. The methods presented have some 

limitations in estimating the sample size for clinical trials. They are presented with the view that they can be used to 
estimate the sample size for most of the clinical trials. The methods take into consideration so many assumptions which 

raise concerns on the power of the study generated from those estimates. The event rates are based on estimations and 

approximations from previous studies of the same groups or people. 

 

This is a challenge since obtaining such information is difficult in many cases. Also the event rates evidenced in the 

literature are based on small sample sizes with very low statistical power which will make the trials unethical if the same 

approximations are utilized in future studies. The statistical methods above do not specify at what phase they can be 

utilized, as we are aware depending with the intervention in question the clinical trial is a complex task that has a well-

defined protocol which must be adhered to. Sample sizes of clinical trials are specific and usually given a range at each 

and every phase. It is imperative for any method presented for sample size estimation to address this issues. The 

methods have addressed the issue of drop-in and drop-out of participants but what if a participant did not drop-out 

completely i.e. if the participants miss interventions or doses within the follow-up period. 

 

Sample size Estimation for Bioequivalence Trials  
When an effective intervention for example a drug product has been established and is considered the standard, efforts 

are made by researchers to develop new interventions that are less expensive, have less side effects, or have less adverse 

impact on an individual’s general quality of life (Proschan, 2009). This kind of studies are common in the field of 

pharmaceutical industry where a drug developed by one company may be tested against an established and marketed 

drug by another company. These kind of studies or trials have positive controls or commonly known as non-inferiority 

designs (Classen, 2004). 

 
Currently, there is no statistical model for designing non-inferiority trials to demonstrate complete equivalence. It is not 

statistically possible to show that there is no difference between two interventions in this kind of trials. If the investigator finds 

evidence not to reject the null hypothesis is not sufficient to claim that the two interventions are equal but a lack of adequate 

evidence to show they are different. (Qu & Zheng, 2003). In bioequivalence trials we need to specify δ i.e., interventions with 

differences which are less than might be considered equally effective or non-inferior. More discussion on non-inferiority trial 

can be obtained from (Herchuelz, 1996, Patterson & Jones, n.d., Hauschke et al., 2007). Specification for δ is a difficult task, it 

is left to the experts to determine depending with the level of tolerance. For dichotomous responses we can assume 

interventions to be equal to P (i.e. P=PC=PI.). The sample size can be estimated as: 
=2 (1− )( + )2/ 2 

Where , , ,are defined as above (Makuchi and Simon, 1978) 

 
As discussed in Friedman et al., 2015, specifying δ, is a fundamental part of the design and sample size estimations of 
all equivalence and non-inferiority trials. Trials should be sufficiently large, with enough power to address properly the  
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questions about equivalence studies. Bioequivalence trials are complex in nature due to the importance they carry in 
medical interventions. Apart from the method presented above for sample estimation other methods have been proposed 
(Chow, 2011, Pharmacokinetic and bioequivalence studies, 1991, Jones & Kenward, 2003). 

 

Usually, bioequivalence studies are conducted under cross-over designs or parallel designs with raw data or log-

transformed data. Researchers have to consider intra-subject and inter-subject variation when estimating sample size in 

cross-over bioequivalence trials. Parallel designs are not very complicated to implement but considerations should be 

taken not to carry out a wasteful clinical trial. Another limitation is the decision by the use of either log- transformed or 

raw data, which one should be adopted without much assumptions and still give desired results. More detailed 

discussion on sample size estimation for bioequivalence trials can be obtained from Hauschke, 2002. 

 

Sample size estimation for clinical trials with multiple end-points  
Most clinical trials have more than one primary question and a single primary response variable. Having a single 

primary question and a single primary response variable is advantageous because of its simplicity in terms of design and 

even execution, but this comes in handy with numerous assumptions which sometimes reduces the efficacy of the study. 

Where investigators cannot agree on which outcome is most important on judging the intervention, it results to multiple 

outcomes. This is true by the fact that effects of interventions are multi-dimensional. Even though multiple primary 

endpoint design is challenging, it is also advantageous since it captures more complete characterization of the 

intervention effects and provide more informative intervention comparisons. 

 
For these reasons, use of more than a single primary endpoint has become a common design in clinical trials for disease 
areas like oncology, infectious diseases, cardiovascular disease and bioequivalence trials in pharmaceutical industries. 

For example, a clinical trial involving participants with pulmonary embolism (Urokinase Pulmonary Embolism Trial 
Study Group, 1974) employed 3 methods of determining a drug’s ability to resolve emboli. They were; lung scanning, 

arteriography, and hemodynamic studies. 

 

Estimation of sample size for such clinical trials is non-trivial. The resulting need for new approaches to the design and 

analysis of clinical trials has been proposed (Dmitrienko et al., 2010; Gong et al., 2000, Hung and Wang 2009; Offen et 

al., 2007). Controlling type I and type II error in clinical trials involving multiple endpoints is also non- trivial. Gordoba 

et al., 2010 mentioned that correlation among the multiple endpoints should be considered when estimating sample size. 

Correlation in multiple endpoint trials is usually unknown and therefore must be estimated with external data. They 

proposed that multiple endpoints can be treated as a single composite endpoint. This will effectively reduce the problem 

to a single dimension hence simplifying the design to avoid the multiplicity issues regarding multiple endpoints. 

Creation and interpretation of a composite endpoint is challenging when the treatment effects vary across components 

with very different clinical importance. 

 

Hamasaki et al. (2012) discussed the sample size estimation for trials with multiple risk ratios and odds ratios as primary 

contrasts. Sozu et al. (2010, 2011) presented the overall power and sample size calculations in bioequivalence clinical 

trials with co-primary binary endpoints assuming that the binary endpoints are jointly distributed as a multivariate 

Bernoulli distribution. They found out that there are significant challenges in estimation of the correlation due to the 

multiplicity of endpoints resulting to restrictions on the correlation. Song (2009) discussed sample size calculations with 

co-primary binary endpoints in non-inferiority clinical trials, but never mentioned anything to do with restrictions on the 

correlation. 

 

Xiong et al. (2005) discussed power and sample size for clinical trials with two co-primary continuous endpoints with 

the assumption that the two endpoints are bivariate normally distributed and their variance-covariance matrix is known. 

Sozu et al. (2006) further discussed this and extended it to continuous endpoints with the assumption that the variance-

covariance matrix is unknown using the Wishart distribution. Sozu et al. (2011) discussed extensions to more than two 

continuous endpoints for both known and unknown variances. Julious and McIntyre (2012) presented three methods of 

sample size estimation of clinical trials involving multiple comparisons. Since the testing procedure for co-primary 

endpoints may be conservative, the methods may result into large and impractical sample sizes. Patel (1991), Stein et al. 

(2007) and Kordzakhia et al. (2010) discussed methods to control the type I error rate in order to address some of the 

issues above. However, these methods can lead to smaller sample sizes which is unethical, and other technical issues. 

 
Sozu, Sugimoto, Hamasaki and Evans, 2015 discussed sample size determination in clinical trials with multiple endpoints. 

They suggested that correlation among endpoints should be incorporated into power and sample size estimation. However, this 

leads to reduction of sample size. They presented methods to calculate sample sizes for continuous co-primary endpoints with 

known and unknown variances, binary co-primary endpoints and continuous primary endpoints. They also  
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noted that these methods were only designed to address specific scenarios of multiple endpoints trials. Before their 

utilization correct assumptions must be taken to avoid difficulties. The methods discussed did not take into consideration 

clinical trials with more than two interventions, clinical trials with mixed endpoints and group sequential clinical trials. 

Perhaps with correct assumptions the methods can be extended to estimate sample sizes for other clinical trial designs. 

These methods require considerable mathematical sophistication and knowledge of programming techniques and this 

effectively limits their application in practice. 
 

 

CONCLUSIONS  
Sample size estimation in clinical trials must be addressed before the start of a randomized, controlled trial. It is crucial 

to know in advance the likelihood of finding valid conclusions from the population assessed. It may be acceptable to 

subject a patient to a chance of a less than ideal treatment, or to the psychological stress of being a ‘subject’, if there is a 

chance of a valid scientific outcome, but it is unethical to conduct a study the design of which cannot make valid 

conclusions. Knowledge of the requirement of sample size is necessary in the planning of a prospective study, and such 

information should encourage investigators into engaging in multicenter trials. The performance of power calculations 

specifically demands that the minimal effect of interest is established and calls attention to important details which may 

otherwise be overlooked. 

 

A proper design and appropriate statistical analysis are essential to validity of all quantitative clinical research. A Type-I 

error is better known than a type II error and reviewers and readers are more cognizant of -values when authors conclude 

that significant differences between groups are found. Equal scrutiny is required when authors decide that there is no 

statistically significant difference. In this age of limited resources and tight budgets, physicians may be forced to employ 

cheapest methods, especially if choices are thought to be similar. It is important to consider associations among 

endpoints into sample size calculation when the endpoints are correlated and the effect sizes are approximately equal 

among the endpoints. In bioequivalence trials, it is important that investigators do not erroneously label two treatments 

as equivalent, when it has merely been shown that the differences were not statistically significant. All clinical studies 

should be based on appropriate calculations of sample size.  
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