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ABSTRACT  

Attaining price stability is one of the objectives of monetary policy in any economy to protect both consumers' and 

producers' interest. Unpredictable food and beverages prices make it difficult for consumers to plan for their expenditure 

in case of unexpected inflation. On the flip side, low prices may hurt producers as they may not be able to protect their 

profit margins. It is therefore imperative to develop a precise and accurate model to forecast Kenya's commodity prices. 

Therefore, the current sought to model the commodities price of food and beverage in Kenya using a Seasonal 

Autoregressive Integrated Moving Average (SARIMA). SARIMA model takes into account the seasonal periodic 

fluctuations in a series that usually recur with about the same time interval. Secondary data on monthly food price index 

was obtained from the KNBS website. The data covered the period from January 1991 to June 2017 with a total of 318 

monthly observations. Data analysis was carried out using the R-statistical software. Using the Maximum Likelihood 

Estimation method, the SARIMA (0,1,2) (0,1,1)12 model had better forecasts accuracy than other competing orders 

based on the Bayesian Information Criterion (BIC=1638.42) criterion with MAE of 2.25 in its forecasting ability. The 

two-year predictions of food and beverages price index showed an oscillatory behaviour with an increasing trend. The 

forecasts can help consumers adjust expenditure in preparation for periods of inflation. Policymakers should make 

priorities to ensure stability of future commodity prices.  
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INTRODUCTION  

Inflation is a general increase in price levels over time. Prices of different consumer goods and services are evaluated by 

the Consumer Price Index (CPI). Thus, the monthly or yearly inflation rate is determined by comparing the CPI for a 

given month to the CPI of that same month in the previous year. Price stability remains the primary objective of 

monetary policy formulation and implementation (CBK, 2017). The Central Bank of Kenya (CBK) through its monetary 

policies is mandated to maintain stable price levels to avoid inflation (Mutwiri, 2017). However, with the fluctuation in 

oil prices, other commodity prices are bound to fluctuate. Kaufmann (2011) & ECB (2010) attributes the surging oil 

prices to the role of supply sides contributed by both OPEC and non-OPEC countries. According to OECD report 2011, 

rise in oil prices results from the increasing oil demand, declining oil production by OPEC coupled with geopolitical and 

climatic conditions. Price fluctuation in commodity prices may lead to deterioration in the balance of payments and the 

resultant uncertainty in future prices is likely to affect investment and depress economic growth. Price volatility is a 

major feature of commodity markets and calls for understand future trends to make informed decisions on investments 

and government policies concerned with price control (Knaut & Paschmann, 2019). 
 

Several economic studies have employed econometric tools to examine how inflation affects most crucial macroeconomic 

variables like consumption, investment, and economic growth. For example, using Structural vector autoregressive (SVAR) 

and Granger causality techniques, Mwangi et al. (2013) researched the linkages between product prices and both general 

inflation (non-food and non-fuel inflation). It was believed that food price and oil prices shocks had a key role in building up 

of relentless inflationary pressures in the Kenyan context. Food and oil prices were found to have a significant role in 

predicting inflation. Moreover, the effect of oil prices was more persistent in determining inflation than that of food prices. 

Ngwen et al. (2015) evaluated the linkage between inflation, growth and progress of the economy and government 

expenditure, in the case of Cameroon. The study outcomes found a long-run association between growth and economic  
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progress, government expenditure and inflation. In another study, Maxwell et al., (2000) discovered that in the short run, 

both the inflation and government disbursements directly impacted on the economic progress. Monitoring these price 

indices is therefore important as it helps in making evidenced-based policies concerning consumption and investment. 

Deflation may affect the economy as it reduces the profitability of firms hence act as a disincentive to investment. It is 

therefore imperative that price levels be stabilized in a manner that drives economic growth. In Kenya, inflation is 

controlled by the monetary policy committee who provides policies aimed at maintaining price stability (Onderi & 

Njuru, 2015). 
 
The Box-Jenkins (1960) techniques have gained popularity in the modelling of time series exhibiting seasonality. Specifically, 

SARIMA models have found their applicability in many fields and areas. It has been adopted mostly in modelling either 

monthly or quarterly data. Saz (2011) highlighted the comparative advantage of using SARIMA models in terms of parsimony 

and the efficiency of data modelling especially for a series exhibiting seasonal periodic fluctuation over time for instance 

Kenya commodity price index. A study which dwelled on consumer price index was done by Nyoni (2019) using annual time 

series data on CPI in Belgium from 1960 to 2017, he modelled and forecasted CPI using the Box  
– Jenkins ARIMA technique. The study presented the ARIMA (0, 2, 1) model for predicting CPI in Belgium. The model used 

in the study did not account for the seasonal component of the CPI data as it used annual time series data. Research by Kumar 

et al. (2014) fitted an ARIMA (2, 1, 0) and forecasted annual sugarcane production data in India from 1950 to 2012. This 

model was able to forecast sugarcane production in India and also predict an increase in sugarcane production in 2013 and a 

sharp decrease in 2014. Mwanga et al. (2017) when modelling quarterly sugarcane yields data and forecast future yields based 

on the past values found out that SARIMA (2,1,2) (2,0,3)4 as the best model which had the lowest AIC and thus a good fit to 

the quarterly sugarcane yields data from 1973-2014. They conclude that Seasonal ARIMA models are proving to be good 

candidates of modelling time series with seasonal patterns and can be applied in any sector. 

 
The most recent study was done by Mutwiri (2019) on Forecasting of Tomatoes Wholesale Prices of Nairobi in Kenya 

using the SARIMA model. The selected SARIMA (2, 1, 1) x (1, 0, 1)12 model was used to forecast the mean monthly 

real tomato prices from January-2011 to December-2011 by using the observed data of the period January- 2003 to 

December-2016. The study only addressed one particular commodity that is Tomato wholesale prices in a particular 

region and did not focus on the average CPI for food and beverage prices in Kenya. Therefore, this study will focus on 

modelling and forecasting of food and beverage prices in Kenya using SARIMA models using monthly series data on 

CPI from 1991 to 2017 to provide a model that may help track price indices in Kenya, particularly food and beverage 

prices. The modelling process will be done following the Box-Jenkins (1976) model building approach which entails, 

identification, specification of the model, model estimation and model diagnostics. 

 

Seasonal Autoregressive Integrated Moving Average Models  
According to Shekhar & Williams (2007), SARIMA models are an adaptation of autoregressive integrated moving 

average (ARIMA) models used to fit seasonal time series data. That is, it takes into account the underlying seasonal 

nature of the series to be modelled. SARIMA model is suitable when the series contains both seasonal and non- seasonal 

behaviour (Kumar & Vanajakshi, 2015). Seasonality in a time series refers to a regular pattern of changes that repeats 

over in time-periods, where h defines the number of time-periods until the pattern repeats (Verbesselt et al., 2010). Data 

observed every month has h being 12. In a seasonal ARIMA model, seasonal AR and MA terms predict using past 

values and errors at times with lags that are multiples of S (the span of the seasonality). 
 
Seasonality behaviour is common on most time-series data makes the ARIMA model inefficient to be applied to the series. The seasonal 
ARIMA model incorporates non-seasonal and seasonal factors in a multiplicative model and is denoted as the SARIMA model (Mutwiri, 
2019). Non-seasonal ARIMA models are usually denoted as ARIMA (p, d, q) where the parameters p, d, and q are non-negative integers and 
p is the order of the autoregressive model indicating the number of time lags, d is the degree of differencing, and q is the order of the moving-
average model (Wang & Niu, 2009). However, the seasonal ARIMA model incorporates non-seasonal and seasonal factors in a multiplicative 
model and is denoted as ARIMA ( , , ) ( , ,   )ℎ (Chen & Wang, 2007). 

 

The first part with the lower notation consists of the non-seasonal component and the second part with upper case 
notation consist of the seasonal part. The h is the number of periods in each season or the period of repeating seasonal 

pattern. That is, the seasonal component repeats itself after every h observations. Periodicity (h) can be 12, for monthly 
data or four for quarterly time-series data. Chatfield (2000), states that if the series is seasonal, with s periods per year, 

then a Seasonal ARIMA (hereby abbreviated SARIMA) model may be obtained as a generalization of an ARIMA. 

 
The SARIMA model with seasonality can be represented as follows:  

(ℎ)() − = ( )(). (1)  
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Where; ( ℎ) is the seasonal AR operator, ( ) is the non-seasonal AR part, ( ) is the seasonal MA operator, Ө(B)℮t is the non-seasonal MA operator, is the time series of the observation at 
time t, B is the backshift operator, ℮t is the white noise, h is the number of periods in a year. 
 
Applying the backward shift operator, the operators can be written as:  

( ℎ)=1−  1 ℎ–  2 2ℎ−⋯−  ℎ (2) 

( )  =1−     −1−⋯−     −   (3) 

( )=1+ 1  +2
2+⋯+ (4) 

(  )℮  = 1 +  1℮  −1 + ⋯ +   ℮  −   (5) 

 

Data and Methods  
The study employed a time series research design. In this study design, measurements of the same variable are taken at 

different points in time. SARIMA modelling technique was applied to fit and forecast monthly Kenya’s food and beverage 

prices index data from January 1991 to June 2017. The selected data has 318 data points. The secondary data was extracted 

from the website of KNBS (knbs.or.ke). The data analysis was done using R -Statistical Software (R Core Team, 2013). The 

preliminary stage entailed checking for stationarity of the data. SARIMA models are appropriate for stationary time series 

satisfying the condition of constant mean and variance over time. For a stationary time-series data, the scatter points in the 

time series plot appear to have a constant mean and variance and oscillates around the mean. Statistically, stationarity of the 

data was tested using the Augmented Dickey-Fuller (ADF) according to Dickey and Fuller (1979). 

 
The ADF procedure attempts to retain the validity of the test based on white noise errors in the regression model by ensuring that errors are 
indeed white noise. If the ADF statistic will be greater than the critical value at 5% significance level then the null hypothesis that there is a 
unit root would be accepted and the series is considered non-stationary. If the series is found to be non-stationary, differencing at different 
degrees of freedom is done until a stationary series of a given degree of differencing is obtained. The main objective of seasonal differencing 
will be to remove seasonal trend and seasonal random walks in our data. Chatfield (2000), further elaborates that a seasonal autoregressive 
term, for example, is one which depends linearly on seasonal lagged values of the series. The SARIMA model with non-seasonal terms of the 

order (p, d, q) and seasonal terms of the order (P, D, Q) is abbreviated as SARIMA(p, d, q)(P, D, Q) model and may be written as 

()(1− )  = ()() (6) 
 
where and denote polynomials in of order P, Q respectively. One model which is particularly useful for seasonal data is the SARIMA model of order (0,1,1)(0,1,1) 12. Shumway and 
Stoffer (2006) confirmed that the multiplicative seasonal autoregressive integrated moving average model, or SARIMA model, of Box and Jenkins (1970) is given by; 

()()∇∇ = + ()() (7) 
 
Where: is the Gaussian white noise process. The general model is denoted as ARIMA (p d q) (P, D, Q)12. The ordinary autoregressive and moving average components are 
represented by polynomials ( ) and ( ) of orders p and q, respectively and the seasonal autoregressive and moving average components by ( ) and ( ) of orders P and Q and 
ordinary and seasonal difference components by 

∇=(1− )∇ =(1−  ) (8) 
Since the data of interest in this study is monthly data, s = 12, hence our equation will be written as,  

(1− )(1− 12)  =(1+  ) ( 12) (9) 
under this method, we shall employ monthly CPI data with 12 seasons per year (s= 12), where the first-order AR(1) model will use   − 12 to predict , while the seasonal first order MA(1) will use   −12 as its predictor. 

 
Modelling Process  
The first step of modelling according to Box and Jenkins approach will be identifying the suitable order of SARIMA (p, 

d, q) (P, D, Q) model. This will entail plotting and examining the sample autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the stationary series to check the degree of internal correlation between observations 
in a time series and at different lags. The number of significant spikes suggests the order of the model.  
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The non-seasonal and the seasonal AR orders, p and P, will be estimated by observing the non-seasonal and the seasonal 
cut-off lags on the ACF plot. Similarly, the MA orders, q and Q, are respectively estimated by the cut-off lags of the 

partial autocorrelation function (PACF). For the order of differencing d and D depends on the order of differencing done 
to make the series stationary. 

 

ACF AND PACF of a stationary time-series data 

Autocovariance Function 
Assuming the variance of is finite, the autocovariance function is defined as the second  moment product  

( , ) = ( , ) = ( , ) = [( − )( − )], for all s and t. Note that ( , ) = ( , ) for all time points s and t. The autocovariance measures the linear dependence between two points on the same series observed at  
different times. Very smooth series exhibit autocovariance functions that stay large even when the t and s are far apart, whereas choppy series tend to have autocovariance functions that 
are nearly zero for large separations. Given that the autocovariance ( , ) of stationary time series depends on s and t only through| −  
|, the notation can be rewritten a + ℎ, where h represents the time shift. 

( + ℎ, )= [(   +ℎ − µ)( − µ)]= (   +ℎ, ) 
( ℎ ,  0) =   (ℎ, 0) =   (ℎ). 

 
Autocorrelation Function (ACF) 
The autocorrelation function is defined as:  

( , ) 

(,)=  
√  (,)(,) 

 

 

(10) 
 
 

 

(11) 
 

 
According to Cauchy-Schwarz inequality: 
|(,)|2≤ (,)(,) 
it can be shown that −1 ≤ ( , ) ≤ 1. 

 
The ACF measures the linear predictability of 
expressed as: 

  (ℎ) = 
 ( +ℎ,) 

=   (ℎ) 

  

( +ℎ, +ℎ)(,)  (0)  

 
(12) 

 
 
using only . Given a stationary time series data; the ACF can be 

 

(13) 
 

 

Partial Autocorrelation Function 
Another important measure is called partial autocorrelation, which is the correlation between and with the linear effect of “everything in the middle” removed. For a stationary process , the PACF (denoted as ℎℎ ), for ℎ = 1, 2,  
… is defined as: 

  11 = corr(Xt+1, Xt) =  1  
 ̂ ̂ 

(14) ℎℎ = corr(Xt+h − Xt+h , Xt − X t ), ℎ ≥ 2 =  1 

̂ ̂   

Where; X t+h and X t is defined as:   
̂  

+⋯+ ℎ−1  +1 (15) X
 t+ h =  1    +ℎ− 1 +  2    +ℎ− 2 

̂   

(16) X
 t =  1  +1 +  2  +2 + ⋯ +  ℎ− 1    +ℎ− 1. 

Ifis Gaussian, then   ℎℎ is actually conditional correlation  

ℎℎ =  ,    +ℎ|  +1 +  +2 + ⋯ +    +ℎ−1 (17) 
Competing orders of the models were compared based on minimization of the Akaike Information Criterion (Akaike, 

1977), Schwarz Criterion (Schwarz, 1978) and Hannan-Quinn Criterion (Hannan & Quinn, 1979). Model evaluation 

criterion in time series modelling and forecasting can be done using various parameters such as the Mean Error (ME), 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), Akaike's 

Information Criteria (AIC), Bayesian Information Criteria (BIC). Several competing models may be ranked according to 
their AIC, or BIC with the one having the lowest information criterion value being the best. These information criteria 

judge a model by how close its fitted values tend to be to the true values, in terms of a certain expected value. The 

criterion attempts to find the model that best explains the data with a minimum of free  
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parameters but also includes a penalty that is an increasing function of the number of estimated parameters. This study 
employed Akaike's Information Criteria and the BIC to select the best model which is parsimonious. A model which has 
a lower value of these information criteria will be preferred. 

 

Akaike’ s Information Criterion 
According to Akaike (1974) and Schwarz (1978), the AIC function is denoted by: 
 

 
2  

= ( 

 

 

(18) )  

   

where; =Number of observations, =Number of parameters, and =Error sum of square 

 

According to (Zhang, 2013), the AIC statistic can also be obtained by: 
 

= −2 log( ) + 2log( + ) , (19) where indicates the likelihood of the data with a certain model, and indicates the lagged orders of AR and MA term respectively. 

 

Bayesian Information Criterion  

According to Gideon E. Schwarz (1978), BIC can be obtained as;  

= −2 log( ) + log( ) 
 (20) 

Or= log( 2) 
 

( ) , (21) 
 

+  log     
 

   

where; k: is the number of parameters in the statistical model, (p+q+P+Q+1), L: is the maximized value of the likelihood 
function for the estimated model, n: is the sample size, and 2: is the error variance. Both BIC and AIC are used for two 

 

different reasons. While AIC tries to approximate the model towards the reality of the situation, BIC tries to find the 
perfect. The BIC approach is criticized as no perfect model can be obtained however it is useful since it penalizes the 
model more heavily for having more parameters as compared to AIC (Hyndman et al., 2015). 

 

Model Diagnostics 
 

The significance level of individual coefficients was measured by Box-Pierce Q statistics and jointly together by Ljung-

Box LB statistics. The model is considered adequate if and only if the p-value associated with the Ljung-Box Q statistic 

is higher than the critical level of significance. Moreover, the correlogram of the residuals can be used to check 

residuals’ autocorrelation. If there is no serial correlation, the autocorrelations and partial autocorrelations at all lags 

should be nearly zero, and all Q-Statistics should be insignificant with large probability values. 

 

Model Accuracy Evaluation 
 

The accuracy of the model selected for forecasting must be higher than that of all the competing models. Hyndman & 

Koehler (2006) studied and compared all measures accuracy and settled on Mean Absolute Scaled Error (MASE) as the 

best measure of accuracy on forecasting. Thus, the accuracy of the model in this study employed all the three methods 

namely; MAE, MAPE and MASE for testing the model accuracy. The model with the minimum of these values is 

considered to be the best for forecasting. In a perfect forecast, the MAE = MASE = MAPE = 0. The smaller the value 

the better the prediction and the big the value the poorer the predictive ability of the model. 

 

Root Mean Square Error (RMSE) 
The RMSE is defined as: 
 

    

= √ 

 (25) 
 

   

 

RMSE measures the “mean prediction error”. For a “Perfect” fit the RMSE will be zero. It is used to measure the difference/residuals 
between values predicted by the model and the observed values. 

 

Where: is the error sum of squares 
 

= ∑ 

 

 

which implies that 
 

   
(  ̂̂−   ̂)2 

   
2 

= √ 

∑ 

= √ 

∑ 

=1 
 

=1 
 

 

  

 

      
 

 

 

(26) 
 

 

 

 

(27) 
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  =1 



Mean Absolute Error ( MAE) 
The MAE is defined as: 
    

= 

 ∑ |−Ŷ| , (28) 
=1 

     

Where:is the actual observation value at time t, Ŷ is the forecasted observation value at time t, and    is the total 

number of observations.  

 

RESULTS AND DISCUSSION 

Descriptive Statistics  
This study aimed at analyzing the consumer price index data covering the period from January 1991 until June 2017, a 
total of 318 monthly observations. Table 1 shows that the series the least Food and Beverage Price Index (FBPI) to be 

recorded was 75.83 and the highest was 196. The series is more varying since the standard deviation is large (33.36). 

This is also a suggestion that the data is non-stationary. However, the measures of variation indicate that the data is 
approximately normally distrusted since the skewness statistic close to zero. 

 

Table 83: Descriptive Statistics 

 Statistic Min Mean Variance SD Max Skewness Kurtosis 

 Price Index 75.83 119.88 1113.21 33.36 196 0.624 0.906 

 

Decomposing the Food and Beverage Price Index Data  
A seasonal time series consists of a trend component, a seasonal component and an irregular component. Decomposing the 

time-series means separating the time series into these three components. Seasonal decomposition, as used by Doulah (2018) 

while examining temperature data in Bangladesh, was employed to determine whether the series exhibits the three 

components. As expected in a time series data like food and beverage index data, figure 1 shows that the original data has a 

changing variance over time with its associated three components and random error. The trend analysis shows an upward 

trend. Since the series has a seasonal component, modelling it using SARIMA is suitable. (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Decomposition of the Price Index Series  
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Testing for Non- stationarity  
The plot in figure 1 shows the seasonal fluctuation in the monthly food and beverage price index data. The data 

appears to be not stationary. The non-stationary data has mean, variance, and correlation that changes over time. 
Generally, there is an increasing trend with no clear evidence of systematic variation about the mean on the time 

series plot. This makes the SARIMA model suitable since it captures seasonal variation a given series.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Time Series Plot of Food and Beverage Price Index 

 
Moreover, with not stationary data the behaviour of the ACF and PACF plot may not aid in the identification of the order of 

both seasonal and non-seasonal AR and MA parts. As shown in figure 3, the ACF plot of the series does not tail of, even at lag 

25. The coefficients on the autocorrelation function have a slow fall affirming that the series is non-stationary.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 22: ACF and PACF Plots of Food and Beverage Price Index Series  
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Therefore, we get the seasonal differences of the series at lag 12 and then examine stationarity. Figure 4 shows the present 

monthly FBPI data and the associated ACF and PACF plots. An examination of the seasonally differenced series shows the 

presence of a trend. The associated ACF plot shows strong seasonal wave patterns that decline moderately. The non-seasonal 

lags decay rapidly confirming the presence of seasonal behaviour. Therefore, the series is non-stationary.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 23: Time series plot of seasonally differenced series at lag 12 and Associated ACF 

 
Since the series is not entirely stationary, thus, the first difference of the seasonally differenced series is applied on the 

resultant series. Based on this visualization in figure 5, differenced data has slightly more stationary properties and no 
obvious trend or seasonality makes it suitable for use in estimating the parameters of the model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 24: First difference of the seasonally differenced series at lag 12  
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To affirm the test, we applied the statistical test for the series stationarity using ADF unit roots tests. The results of the 

Augmented Dickey-Fuller (ADF) test on the FBPI series are represented in Table 2. The results indicate that series is 

stationary in the First difference and at the first difference of the seasonally differenced series at lag 12 (p<0.05). Thus, the 

model ARIMA (p, d, q) we will have the value d=1whereas the model ARIMA (P, D, Q) we will have the value D=0. 

 

Table 84: Unit Root Test 

  
Level First Difference 

Seasonal Difference at First Difference of the 
  

lag 12 (SDL12) SDL12     

 ADF -2.0813 -7.3809 -5.4164 -7.0196 

P-value 0.5422 0.01
** 

0.01
** 

0.01
** 

 

Model building for the monthly Food and Beverage Price Index Series  
According to Shumway & Stoffer (2017), the process of model fitting entails data visualization, data transformation 

where necessary, model identification of dependence order, estimation of the parameter, diagnostic analysis and 
choosing an appropriate model. Thus, this section presents the second stage of the analysis of determining the best 

suitable SARIMA model. 

 

Model Identification  
After the detection of stationarity of the series, the order of both seasonal and seasonal part AR’s and MA’s process 
suiting the model is then determined by examining the behaviour of both ACF and PACF. Figure 4 shows ACF and 
PACF plots, taking seasonal lags up to 50 lags. 

 

Non-seasonal behaviour:  
We examine the early lags to determine the non-seasonal terms. Spikes in the ACF, at low lags, indicate non- seasonal 
MA terms. Whereas, spikes in the PACF, at low lags, indicate possible non-seasonal AR terms. The early lags in the 

PACF tails at lag 2. Thus, we can estimate the non-seasonal MA (2) process. The PACF shows a highly significant spike 

at lag 1 which then levels until lag 12, 24, and so on. However, the spikes dwindle with time. The sequence is 
accompanied by a tapering pattern in the lags of the ACF plot. Thus, a non-seasonal AR (1) can suit part of the model. 

 

Seasonal behaviour:  
To determine the order of this component we examine the patterns across lags that are multiples of S. For monthly data, 

as in this case, the behaviours of the spikes around lags 12, 24, 36, and so on, is examined. The ACF plot shows a cluster 

of (negative) spikes around lag 12 and lags 24, and 48. However, positive clusters of spikes are seen at lag 36. The 

PACF is tapering in multiples of S=12; That is the PACF has significant lags at 12, 24, and 36 akin to seasonal MA (1) 

process. Based on the ACF and PACF of the 12th differences, we can estimate an ARIMA (1,1,0) (0,1,1)12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 85: AFC and PACF Plots of the First Difference of the Seasonally Differenced series at lag 12  
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It is a common practice to examine a combination of orders in a bid to determine a model that minimizes either of the 
chosen information criteria. Table 4 shows the comparison of models using AIC and BIC. 

 

Table 86: Comparison of SARIMA Models Using AIC and BIC 

SARIMA S AIC BIC 
MODEL(Order)    
    

(0,1,2) (1,0,0) 12 1673.422 1688.457 
(0,1,2) (0,0,1) 12 1673.413 1688.449 
(0,1,2) (0,1,1) 12 1638.415 1653.296 

(0,1,3) (1,0,1) 12 1673.473 1696.026 

(1,1,0) (1,0,0) 12 1674.78 1686.056 

(1,0,0) (0,1,1) 12 1674.78 1686.056 

(1,1,0) (0,1,1) 12 1639.008 1650.169 

(1,1,1) (1,0,0) 12 1675.383 1690.418 

(1,1,1) (0,0,1) 12 1675.374 1690.409 

(1,1,2) (1,0,0) 12 1673.856 1692.651 

(2,1,0) (1,0,0) 12 1675.108 1690.143 

(2,1,1) (1,0,0) 12 1674.154 1692.949 

(3,1,0) (1,0,0) 12 1676.813 1695.608 

(3,1,1) (1,0,0) 12 1677.179 1699.732 

(3,1,1) (0,0,1) 12 1677.173 1699.726 

(0,1,3) (1,0,0) 12 1674.732 1693.527   
The results from Table four indicate that according to Akaike (AIC) and Schwartz (SIC) criteria, SARIMA ((0,1,2) (0,1,1) 12 

model is the most suitable. The parameters given are the non-seasonal specification of AR (0), differencing (1), and MA  
(2), followed by the seasonal specification of seasonal AR (0), seasonal differencing (1), seasonal MA (1), and period or 
span for the seasonality (12). 

 

Estimation of the Model  
The maximum likelihood estimation method is employed in the estimation of the coefficients of the model. An iteration 

procedure is required when estimating the parameters of SARMA models (Box & Jenkins, 1976). The results of the 

SARIMA ((0,1,2) (0,1,1)12 model show that all the estimated SARIMA coefficients are statistically significant (Table 5). 

 

Table 87: Table of Coefficients 

  Estimate SE t. value p. value 

 ma1 0.4625 0.0587 7.8743 0.0000 
ma2 0.1501 0.0548 2.7386 0.0065 
sma1 -1.0000 0.0796 -12.5645 0.0000 
      

 

Diagnostics Checks of the Model 

Normality Test  
The standardized residuals estimated from the models should behave as an independently and identically distributed 

sequence with zero mean and constant variance. A normal probability plot or a Q-Q plot can aid in the identification of 

the departure of the distribution of residuals from normality. The residual plot shows that the standardized sample 

residual plots depict a constant variance. The normal Q-Q plots show that the residuals are approximately normally 

distributed since they lie along the 45
0
 line (Figure 6). 

 
Autocorrelation  
There is no correlation between each lag of its values since the residuals don’t have any significant autocorrelation as 

shown by the ACF plot (Figure 6). That is, the plots of the ACF of the residuals lack enough evidence of significant 

spikes an indication that the residuals are white noise. The results also showed that the residuals are non- significant 

with the Ljung – Box-Pierce statistics up to lag 7. That is the autocorrelation and partial autocorrelation coefficients are 

non-statistically significant in up to lag 7 since the associated Q-statistics have large probability- values. The results 

imply that that residuals are not autocorrelated hence do not call for the usage of ARCH models. The fitted SARIMA 

(0,1,2) (0,1,1)12 model can therefore be used for forecasting.  
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Figure 25: Diagnostic Checks 

 

Forecasting  
Forecasting helps in planning and decision-making process since it gives an insight into the future uncertainty using the 

past and current behaviour of given observations (Doulah 2018). Therefore, the resultant model was used to fit h-step 

ahead forecasts. The forecast for the next 24 months from July 2017 to July 2020 with the 95% confidence interval as 

shown in figure 7. The forecast results depicted a decreasing pattern of FBPI in the last quarter of 2017 followed by an 

increasing trend in the third quarter of 2018. Thereafter the price index increases steadily up to the third quarter of 2020. 

The accuracy of the model in making h-step ahead prediction was done using the accuracy-test summarized in table 6. 

 

Table 88: Model Accuracy Test 

 Parameter ME RMSE MAE MPE MAPE MASE 
        

 Value 0.09650335 3.216398 2.252747 0.09048207 1.818399 0.8673462 
        

 

CONCLUSION  
Following the Box-Jenkins approach, this study assessed the ability of the SARIMA models to fit and forecast food and 

beverage and price index series of Kenya from January 1991 to June 2017. Based on minimum AIC, and BIC values, the 

findings showed that best order among competing orders of SARIMA was SARIMA (0,1,2) (0,1,1)12 model and can 

forecast the FBPI for Kenya with MASE of 0.867. The forecasts covered the 24 months from July 2017 to July 2020. 

The forecast results depicted a decreasing pattern of an increasing trend from the third quarter of 2018 till the third 

quarter of 2020. Based on these forecasts, prices seem to be highly volatile. Thus, policymakers should take appropriate 

monetary policy options to stabilize the prices. Since price fluctuations have been attributed to surging world oil prices, 

there is a need to create a buffer stock to even out oil demand within the country more so as Kenya recently began oil 

exploration and production. The oil production and distribution should be managed to avoid intentional hoarding. Give 

that investment and consumption decisions continually rely on prospects, future on a comparison of this model with 

other competing models that capture seasonality is recommended.  
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Figure 26: Actual Time Series Plot of FBPI and the h=24 Step Period Forecasts 
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