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QUESTION ONE (30 MARKS)

a)
b)

c)

d)

Let Q(v2)={a + b+2}. Show that it is a subfield of R. (5 marks)
Differentiate with examples between an algebraic and transcendental element over a field
F (4 marks)
(i)Show that v/2+ /3is algebraic over Q

(i)  Find its degree of its extension over Q (6 marks)

Find a root of x* + 4 over Zs and factorize it fully in Zs (5 marks)

Let E be a finite extension of degree n over a finite field F. Prove that if F has q elements
the E has q™ elements (5 marks)

Construct a finite field GF(4) and the multliplication table of its nonzero elements

(5 marks)



QUESTION TWO (20 MARKS)

a) Use the Einstein irreducibility criterion to show that 29x> + 42x* + 39x3 — 12x2 + 15x —

6 is irreducible over Z[x] (5 marks)

b) By solving for the irreducible monic polynomial f(x) € Q(x) such that « is a root of f(x),
find the degree of x= V5 — 2 over Q. (4 marks)
c) Let E be an algebraic extension of field F and let «, 8 € E, explain what is meant by elements
« and B being the conjugates over the field F and find all the conjugates of V1 +/3 over
Q. (6 marks)
d) Find the degree and basis for Q(3/2,V/5). (5 marks)

QUESTION THREE (20 MARKYS)

a) Show that the field F = Q(i, —i,+/5,— V5 is a simple extension given by F’' = Q(i +

J5) (i.e F=F") (5 marks)
b) By considering an irreducible polynomial f(x) over Z, of degree 3 construct GF(8).
(5 marks)

c) Show that a field F is algebraically closed if every non-zero polynomial in £ (x)
factors into linear factors. (5 marks)

d) Prove that a finite extension over a field F is an algebraic extension over F (5 marks)

QUESTION FOUR (20 MARKYS)

a) Find the splitting field of x* — 9x2 + 14. (5 marks)

b) Determine whether the polynomial x* — 3x + 4 is irreducible in Q by first checking if
it has a rational root. Can we conclude its irreducible? (6
marks)

c) Show that 4x3 + x? — x + 3 is irreducible in Q[x] (5 marks)

d) By solving for the irreducible monic polynomial f(x) € Q[x] such that « is a root of f(x),

find the degree of «c= /32 + 3 over Q. (5 marks)



QUESTION FIVE (20 MARKYS)

a) Show that x?2 — x — 1 is solvable by radicals (4 marks)

b) (i)Explain the set of all automorphisms of [Q(v2,v/3)/ Q]
(i)Draw and explain the corresponding subgroup and subfield diagrams (15 marks)




