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INSTRUCTIONS 

Answer question one and any other two questions 

Adhere to the instructions on the answer booklet. 

QUESTION ONE  Compulsory. 

a. Obtain 
0a , 

na  and 
nb  for the Fourier series of the function defined as  6mks 
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b. Find Fourier Sine transform of  3 2( ) 2 3x xf x e e       5mks   

c. Find Fourier cosine transform of  
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d. Find  ( )f x  if its finite Fourier sine transform is given by 
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e. If ( )F s is the complex Fourier transform of ( )f x , show that 
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f. Using Parseval’s identity for sine transforms, obtain   
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g. Determine the exponential form of the Fourier series for the function defined by  2( ) tf t e  

when –1 < t < 1 and has period 2      5mks 

 

 

QUESTION TWO 

a. A periodic function of period 4 is defined as  
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Obtain 0a , na  and nb         6mks 

 

 



b. The temperature  ,u x t  in a semi-infinite rod 0 x   is determined by the differential equation 

 , 2u x t uxxt    subject to conditions: 

            0, 0, 0u when t x    

             , 0, 0u k when x tt      

                

Obtain the equation for the temperature   ,u x t at any point along the rod  10mks 

 

 

c. Find the function f(x) if its Fourier  sine transform is given by  ase   4mks 

 

 

 

QUESTION THREE 

a. Using Fourier transform, solve the equation  , , 0 , 0u x t ku x txxt     subject to the conditions 

 

   0, 0, 0u t t  ,         

                               ,0 , 0xu x e x  ,        

u and ux   tends to zero as x       10mks 

 

 

b. Solve  , 0 6, 0u u x txxt      under the given conditions      0, 0, 6, 0, ,0 2u t u t u x xx x     

by Fourier transforms.          9mks  

 

 

     QUESTION FOUR 

a. A periodic function f(t) of  period 2 is defined by  
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b. Find the Fourier series expansion of the periodic function of period 2 given as  

2( ) ,f x x x      

Hence, find the sum of the series  
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c. Find the Fourier sine integral for  ( ) xf x e  ,  0      6mks 

  

 

QUESTION FIVE 

a. Solve 0, 0t xxU kU for x t   , under the given conditions 0 0, 0U U at x t   , with initial 

conditions  ( ,0) 0, 0U x x   by Fourier transforms.      8mks 

   



b. Find the finite Fourier sine transform  of  f(x) = 1 in (0,  ). Use the inversion theorem and find the 

Fourier series for f(x) = 1 in (0,  ). Hence show that 
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c. Find the Fourier cosine transform of 
2 2a xe  and hence evaluate the Fourier sine transform of 

2 2a xxe          6mks   

 

 


