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ABSTRACT
Operators in Hilbert space have properties which are useful in the study of mathematical ab-

stract areas such as approximation theory, Banach Fixed point theory, the spectral theory as

well as QuantumMechanics. Schrödinger equation is a fundamental entity withmany applica-

tions in Quantum Mechanics. This equation was initially derived by applying the knowledge

of electromagnetic wave function and Einstein theory of relativity. Later, it was derived by

applying the knowledge of Newtonian mechanics. It was also derived by extending the wave

equation for classical fields to photons and simplified using approximations consistent with

generalized non-zero rest mass. However, from the existing literature no study has been done

on deriving Schrödinger equation using properties of Hilbert space operators. In this study,

Hilbert space operators that include unitary operators, self adjoint operators and compact op-

erators, norms of linear operators, Hilbert Schmidt operator, normal operators together with

Lebesque Integral, Neumann Integral and spectrum are used in place of the existing concepts

of electromagnetic wave function, Einstein theory of relativity and approximation consistent

with generalized non zero mass to derive the Schrödinger equation. Furthermore, this study

has established the correlation between the electromagnetic wave function and Einstein theory

of relativity in relation with Hilbert space operators. Application of Hilbert space operators

on Quantum observables such as position, momentum and energy of a particle has been done

in these study. The derivation of Schrödinger enhances equation and its application using

Hilbert space operators have enhanced a better understanding of the concept of Schrödinger

equation. The results of this work will be useful in quantum mechanics as well as in mathe-

matical operator theory.
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CHAPTER ONE
INTRODUCTION

1.1 Background Information
Schrödinger equationwas first derived by Schrödinger in 1926. In his work he used the knowl-

edge of electromagnetic prototype of wave equation (ν2▽2− d2

dt2
)E = 0 and Einstein equation

E = mc2 (Ward and Volkmer, 2006). The purpose of his study was to find the wave function

of the electron. Nelson (1966) used Newtonian mechanics to derive Schrödinger equation. In

his work he used the hypothesis that any particle of mass m constantly undergoes Brownian

motion with diffusion coefficient ℏ
2m . Ward and Volkmer (2006) derived Schrödinger equation

by extending the wave equation for classical fields to photons and generalized to non-zero rest

mass particles and using approximations consistent with non-relativistic particles.

Hilbert space gives a means by which one can consider functions as points belonging to an

infinite dimensional space. Leversha (2010) stated that, the states of quantum systems are

identified by unit vectors in an infinite dimensional complex Hilbert space and observables

such as position, momentum and energy are realised as self-adjoint linear operators acting

on the space. Consequently, Leversha (2010) showed the relationship between the needs of

physics and the mathematics of operators of Hilbert spaces.

Mathematical techniques are widely applied in quantum mechanics such as in finding the

probability position of a particle at a particular place. Gagne (2013) stated that if the system

S in a state lying S ⊂ M, i.e. x ∈ S, the characteristic function Xs(x) = 1 while if x /∈ S

then Xs(x) = 0 forM is the phase state. Gagne (2013) showed that the probability density of

a particle is given by pr(Ψ, x ∈ ∆) where∆ is the probability region where a particle can be

found i.e.

∫
R3

∥Ψ(x)∥2dx = 1 (1.1)

Packel (1974) showed that, Hilbert space axioms are a most natural generalization of prop-

erties of finite dimensional Euclidean space. In his work, Packel stated that the theory of or-

thonormal bases and spectral decomposition grows directly out of Hilbert’s workwith quadratic

forms and integral equations. Significantly, Hilbert space gives a natural and effective set-

ting for one formulation of quantum mechanics. This Quantum mechanics, Leversha (2010)
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stated that the physical theory that describes the behavior of matter in the microscopic realm

and hence reigns supreme in the realm of molecules, atoms and subatomic particles.

According to Mostafazadeh (2004), Hilbert space with time dependent inner product arises to

develop a non-relativistic quantum mechanics of a particle confined into move on an oscillat-

ing membrane. In his work Mostafazadeh (2004) stated that, a linear operator

U : H1 → H2 where H1 and H2 are Hilbert spaces is said to be unitary operator if Ψ,Φ ∈

H1, ⟨UΨ, UΦ⟩2 = ⟨Ψ,Φ⟩1 where ⟨., .⟩1 and ⟨., .⟩2 respectively stand for inner product of

H1 and H2. Mostafazadeh (2004) found that the physical observables are identified with

Hermitian operators O : H→H and dynamics governed by Schrödinger equation.

iℏ
∂

∂t
Ψ(r, t) = HΨ(r, t) (1.2)

where i is imaginary unit, ℏ reduced Planck constant and H Hamiltonian and may be time

dependent. Heslot (1985) stated that the motion of a Quantum system is governed by a

Schrödinger equation iℏ d
dt
|Ψ⟩ = Ĥ|Ψ⟩. Assuming that| Ψ⟩ is normalized, then the Hamilto-

nian function H can be defined in terms of Ĥ , Hamiltonian operator as ⟨Ψ | Ĥ | Ψ⟩

Siddiqi and Nanda (1986) stated that, Hilbert space was first introduced by David Hilbert

between 1862- 1943. In their work they stated that Hilbert space, is complete inner product

space. Siddiqi and Nanda (1986)stated that, If T is an operator on Hilbert spaceH then:

(i) T is normal if TT ⋆ = T ⋆T

(ii) T is self-adjoint (or Hermitian) if T = T ⋆

(iii) T ∈ B(H) is positive if ⟨Tx, x⟩ ≥ 0 for all x ∈ H

(iv) T is unitary if TT ⋆ = T ⋆T = I

Grigoriu (1995) stated that, LetT ∈ B(H) onHilbert space, by Reisz Representation theorem,

there exists a unique vector z = zy ∈ H so that ⟨y, Tx⟩ = ⟨zy, x⟩ for all x ∈ H . The map

T ∗ : H→H is defined as T ∗y = zy. Thus ⟨T ∗y, x⟩ = ⟨y, Tx⟩ ∀x, y ∈ H which uniquely

determines T ⋆y for y ∈ H. Thus T ∗ is an adjoint operator of T . If two elements of the setM
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are pairwise orthogonal vectors, each of the vector is normalized and each has a norm equal

to one, then a setM is called orthonormal (Akhiezer and Glazman, 2013).

The definition of Riemann’s integral is adopted from Trench (2012). Let f be defined on

[a, b], then Trench stated that f is said to be Riemann integrable on [a, b] if there is a number

L with the following property. For every ϵ>0 there exists a δ>0 such that |σ − L| < ϵ. If

σ is Riemann’s sum of f over partition P of [a, b] such that ∥P∥ < δ . Then L is Riemann’s

integral of f over

∫ b

a

f(x)dx = L. (1.3)

Suppose H is a separable Hilbert space and T ∈ B(H). According to Al-Gwaiz (2008) T is

a Hilbert- Schmidt operator if there exist an operator basis

e∞n=1 :
∞∑
n=1

∥Ten∥2 <∞. (1.4)

Vectors which have complex components are symbolized by | a⟩ and they can also be obtained

by linear combination of a set of basis vectors i.e.,

| a⟩ = c1 | x1⟩+c2 | x2...cn | xn⟩ =
∑
j

cjxj (1.5)

where cj are constant coefficients (Okelo, 2015). If position vector R is in three dimensions,

each vector space can be represented by basis vectors of i, j and k as

R = xî+ yĵ + zk̂ =
∑
j

cjxj (1.6)

where, c1 = x, c2 = y, c3 = z, x1 = î, x2 = ĵ, x3 = k̂

1.2 Statement of the Problem
Schrödinger equation was initially derived using the knowledge of electromagnetic proto-

type of wave function and the Einstein theory of relativity to determine the wave function

of an electron. Later, the Schrödinger equation was derived using Newtonian mechanics.

It was also derived by extending the wave equation for classical fields to photons and sim-

plified using approximations consistent with generalized non-zero rest mass. Hilbert space
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operators exhibits some interesting properties like unitization, self adjointness, compactness,

norms of linear operation, Hilbert Schmidtization, normal operation, Lebesque and Neumann

Integrations as well as the spectrum. An alternative derivation of the Schrödinger equation

using these Hilbert space operator techniques comes handy . Consequently the application of

the Hilbert space operators in obtaining solutions to the Schrödinger equation that shows the

probability position of a particle, momentum and energy has been considered in this study.

1.3 Objectives of the Study

1.3.1 Broad Objective:
The main objective of this study was to formulate the Schrödinger equation using Hilbert

space operators approach.

1.3.2 Specific Objectives:
The specific objectives of this study were to:

(i) To establish the correlation between electromagnetic wave theory and Einstein

theory of relativity in the derivation of Schrodinger equation using Hilbert space

operators.

(ii) To describe the probability position of a particle in three dimensions using Hilbert

Space Operators.

(iii) To describe momentum and energy of quantum mechanics using Hilbert Space

Operators.

1.4 Significance of the Study
Derivation of Schrödinger equation and its application using Hilbert space operators enhances

the understanding of the concept of the Schrödinger equation. The study of Hilbert operators

has been useful to mathematical areas such as Approximation theory, Banach Fixed point and

the spectral theory as well as the theory of measure and Lebesgue Integration. Approximation

theorem is applied because it is concerned with how functions can be approximated with

simpler functions and with quantitatively characterising errors introduced. Banach fixed point

theorem is useful in this study because the theorem yields existence and uniqueness theorems

for differential and integral equation.
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Hilbert space operators guarantees the existence of spectral measures i.e. “observables” that

correspond to a “state” i.e. an element in Hilbert space. This benefits are extended to under-

standing of the Schrödinger equation, which is applied in different areas of quantum mechan-

ics.
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CHAPTER TWO
LITERATURE REVIEW

2.1 Derivation of Electromagnetic Wave Equation
Electromagnetic wave equation in a vacuum is derived from Maxwell equations, (Dyson,

1990) described as shown in equations (2.1) - (2.4)

∇⃗.E⃗ = 0, (Gauss′ law of electricity) (2.1)

∇⃗.B⃗ = 0. (Gauss′ law of magnetism) (2.2)

∇⃗ × E⃗ = −∂B⃗
∂t

(Faraday′s law induction) (2.3)

∇⃗ × B⃗ = µ0ϵ0
∂E⃗

∂t
(Ampere′s law) (2.4)

where,

∇⃗ three-dimensional gradient operator

E⃗ electric field

B⃗ magnetic field flux density.

Taking the curl for E⃗ field propagated along the x direction by Wang (1986) we obtain,

∇⃗ × E⃗(x, t)ĵ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

0 E(x, t) 0

∣∣∣∣∣∣∣∣∣ = 0 (2.5)

Taking the curl of Faraday’s law and substituting Ampere’s law for a charge and current free

region Wang (1986) obtained

∇⃗ × ∇⃗ × E⃗ = − 1

c2
∂2E⃗

∂t2
. (2.6)

In three dimensions, wave equation, (Wang, 1986) represented it as shown below
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∂2Ex

∂x2
+
∂2Ey

∂y2
+
∂2Ez

∂z2
=

1

c2
∂2E

∂t2
. (2.7)

Remark 1

The derived electromagnetic wave equation in (2.7) helped in obtaining the correlation be-

tween Hilbert space operators and Electromagnetic wave equation. This was later used in the

derivation of Schrödinger equation.

2.2 Derivation of Einstein Theory of Relativity
The particle freely falling in a gravitational field results in a constant acceleration, that is, the

velocity changes at a constant rate (Einstein, 2015). In his work Einstein (2015) noted that it

is impossible for an observer to distinguish between an object freely falling in a gravitational

field and some other mechanism of uniform acceleration such as a rocket. Since acceleration

describes how objects move through space and time, and free fall in gravity and any uniform

acceleration were indistinguishable, that gravity’s effect on objects may actually be describ-

able by its direct influence on space itself. By this he proved that placing a heavy bowling ball

at the center of the trampoline pad, the center of the pad sag downward. Einstein (2015) then

assumed the that if the trampoline pad represents space-time, and the bowling ball a gravitat-

ing object, then the sagging of the trampoline represents the curvature of space time under the

influence of gravity.

Einstein relativistic expressions can be derived starting from the relativity principle and the

classical Lorentz’s law (Hamdan et al., 2007). The Lorentz’s force equation for point charge

in both E⃗ and B⃗ field is

F⃗ = q(E⃗ + v⃗ × B⃗) (2.8)

where,

q charged particle

v⃗ velocity of the particle

E⃗ electric field and

B⃗ magnetic field flux density.

According to Hamdan et al.,(2007), the cartesian components of equation (2.8) are
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Fx = q(Ex +Bzvy −Bzvy) (2.9)

Fy = q(Ey +Bzvx −Bxvz) (2.10)

Fz = q(Ez +Byvx −Bxvy). (2.11)

Applying relativity principles on equations (2.9),(2.10) and (2.11) we obtain

F ′
x = q(E ′

x + v′yB
′
z −B′

yv
′
z) (2.12)

F ′
y = q(E ′

y + v′xB
′
z −B′

xv
′
z) (2.13)

F ′
z = q(E ′

z + v′xB
′
y −B′

yv
′
x). (2.14)

According to Hamdan et al.(2007) the relativity principle are represented by equations (2.16)-

(2.18) where γ scalar factor

γ =
1√

1− u2

c2

(2.15)

v′x =
vx − u

1− vx
u
c2

(2.16)

v′y =
vy

γ(1− uvx
c2
)

(2.17)

v′z =
vz

γ(1− uvx
c2
)

(2.18)

In classical physics, a particle with rest massm0 with velocity v has a momentum of p = m0v

and a kinetic energy of T = 1
2
m0v

2 and in relativistic physics,

p =
m0v√
1− v2

c2

= mv (2.19)
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Squaring both side of equation (2.19) Hamdan et al.,(2007) obtained

P 2 = γ2(m2
0v

2) = m2v2 (2.20)

The root for the term γ2(m2
0v

2) in equation (2.20), Hamdan et al., (2007) obtained,

ϵ = mc2
√
1− v2

c2
= γm0c

2 = mc2 (2.21)

which is the Einstein Equation.

Equation (2.21) is the relativistic energy ϵ, telling us that the change of mass of a particle is

accompanied by change in its energy and vice versa. Hamdan et al.,(2007) used the classical

Cartesian components of Lorentz’s law, relativistic velocities, classical momentum and kinetic

energy to derive the relativistic energy as shown in equation (2.22).

ϵ2 = c2p2 +m2
0c

4. (2.22)

Remark 2

This relativistic energy derived from this literature was used in the derivation of Schrödinger

equation using Hilbert space operators.

2.3 Derivation of Schrödinger Equation
Ward and Volkmer (2006) derived the derivation of Schrödinger equation. In their work they

used electromagnetic wave equation and Einstein’s theory of relativity. They use the same

approach as that used by Schrödinger. However they extended the wave equation for classical

fields to photons and generalized to non-zero rest mass particles and using approximations

consistent with non-relativistic particles. They considered the one dimension equation:

∂2E⃗

∂x2
− 1

c2
∂2E⃗

∂t2
= 0 (2.23)

Equation (2.23) is satisfied by plane wave solutions

E(x, t) = E0e
i(kx−wt) (2.24)

where k = 2π
λ
and ω = 2πf are spatial and temporal frequencies respectively. Substituting

equation (2.24) in (2.23) Ward and Volkmer (2006) obtained
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(
∂2

∂x2
− 1

c2
∂2

∂t2
)E0e

i(kx−ωt) = 0 (2.25)

On solving the wave equation, the dispersion relation for light in free space is k = ω
c
where c

is a wave propagation speed. In this case speed of light is in vacuum. From Einstein (2015),

the energy of photon is ϵ = hv = ℏω and the momentum of photon is

p =
h

λ
= ℏk (2.26)

Therefore equation (2.24) becomes

E(x, t) = E0e
i
ℏ (px−ϵt) (2.27)

and on substituting on equation(2.25), Hamdan et al., (2007) obtained

− 1

ℏ2
(p2 +

ϵ2

c2
)E0e

i
ℏ (px−ϵt) = 0 (2.28)

where, ϵ2 = p2c2.

Since Ward and Volkmer (2006) were dealing with electric field, they replaced E with Ψ, the

wave function. Therefore,

− 1

ℏ2
(p2 − ϵ2

c2
+m2c4)Ψ0e

i
ℏ (px−ϵt) = 0. (2.29)

For the relativistic total energy ϵ2 = p2c2 +m2c4 i.e

ϵ = mc2
√

1 +
p2

m2c2
. (2.30)

Expanding equation (2.30) binomially, we get

ϵ ≈ mc2(1 +
1

2

p2

m2c2
) = mc2 + τ. (2.31)

where τ is the classical kinetic energy.

Thus equation Ψ(x, t) = Ψ0e
i
ℏ (px−mc2t−τt) can be written as

Ψ(x, t) = Ψ0e
i
ℏ (px−mc2t−τt)
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= e−
i
ℏmc2tΨ0e

i
ℏ (px−τt) (2.32)

Let

Ψ0e
i
ℏ (px−τt) = Φ (2.33)

Therefore equation (2.32) can be written as

Ψ(x, t) = e−
i
ℏmc2tΦ. (2.34)

Carrying out second differentive with respect to t on equation (2.34)Ward andVolkmer (2006)

obtained,

∂2Ψ

∂t2
=

(
−m

2c4

ℏ2
e−

i
ℏmc2tΦ− 2i

ℏ
mc2e−

i

ℏ
mc2t

∂Φ

∂t

)
+ e−

i
ℏmc2tΦ. (2.35)

The first term in brackets is large and the last term is small. We keep the large terms and

discard the small one. Using this approximation in the Klein-Gordon equation

1

c2
∂2

∂t2
Ψ−∇2Ψ+

m2c2

ℏ2
Ψ = 0 (2.36)

Ward and Volkmer (2006) arrived at the the Shrondinger equation for free particle as shown

in equation (2.36)

− ℏ2

2m
∇2Φ = iℏ

∂Φ

∂t
(2.37)

where Φ is a non-relativistic wave function.

Remark 3

The derivation of Schrödinger equation using electromagnetic wave equation and Einstein

theory of relativity, helped in the derivation Schrödinger equation using Hilbert space opera-

tors.

2.4 Hilbert Space Operators in Quantum Mechanics

The wave in Hilbert spaces, functions and hence the function of a state are seen as points in

the space and each point will have a position vector. The position vector R in 3 dimension is
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given by

R = xî+ yĵ + zk̂ =
∑

j cjxj , where c1 = x, c2 = y, c3 = z, and x1 = î, x2 = ĵ, x3 = k̂.

Okelo (2015) noted that properties of vector quantities are as follows,

Let vectors which have complex components be symbolized by | a⟩, then the conjugate of

| a⟩ will be given by | a⟩⋆

(i) ⟨b | c | a⟩ = c⟨b | a⟩

(ii) ⟨b | (| a⟩+ | a′⟩)⟩ = ⟨b | a⟩+ ⟨b | a′⟩

(iii) ⟨a | a⟩ ≥ 0 and is real

(iv) ⟨a | 0⟩ = 0

(v) If vectors |a⟩ and |b⟩ are orthogonal then ⟨a|b⟩ = 0

(vi) If |a⟩ and |b⟩ are a unit vectors then⟨a|b⟩ = 1

In the study of properties of Hilbert space operators and their application in Schrödinger equa-

tion, Okelo (2015) used unconventional vector quantity and properties of Hilbert space to

express one- dimensional time dependent wave function |Ψ(x, t)⟩ as a vector (|Ψ⟩) with the

total probability that a particle is in a region is represented as,

⟨Ψ|Ψ⟩ =
∫ ∞

−∞
Ψ⋆(x, t)Ψ(x, t)dt = 1 (2.38)

if |Ψ⟩ is a normalized.

In quantum mechanics, operators are said to be self adjoint if Â⋆ = Â. The adjoint of the

momentum operator is P = P ⋆ = −iℏ ∂
∂x
. The wave function of a free particle is of the form

Ψ(x, t) = Aei(kx−ωt) so the momentum operator operating on wave function of free particle

is given by

p | Ψ⟩ = −iℏ(ik)Aei(kx−t) = ℏk|Ψ⟩ (2.39)

Okelo (2015) noted that the quantum states of physical system are identified as vectors where

else the wave functions are viewed as function vectors. This means for one dimensional time
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dependent wave function Ψ(x, t) can be written as a vector |Ψ⟩. The normalization of wave

function is expressed as equation (2.37).

2.4.1 Time Dependent Hilbert Space and Dynamical Invariant

Themetric of Hilbert space is not an observable quantity so it does not appear in the Schrödinger

equation. The formulation of quantum mechanics on Hilbert space with time dependent inner

product arises when developing a non- relativistic quantum mechanics of a particle confined

to move in an oscillating membrane of a particle subject to a time dependent in homogeneous

gravitation field such as gravitational wave (Mostafazadeh, 2004). In his work, Mostafazadeh

(2004) stated that, if H1 = H2 are Hilbert spaces obtained by endowing a vector space with

time independent inner product ⟨., .⟩1 and time dependent inner product ⟨., .⟩2 respectively,

then a linear operatorH such that v → v defines a unitary time evolution in H2 according to

Schrödinger equation (1.2)

Koopman (1931) stated that a single particle described by Hamiltonian H(p, q) in two di-

mensional classical space consists of commuting position and momentum variables and the

distributing function is given by f(q, p; t). He showed that the classical Liouville equation

obeyed by this distribution is given by

∂f(q, p; t)

∂t
= (

∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q
)f(q, p; t) = iL̂f(q, p; t) (2.40)

This was immediately followed up by Neumann (1932) who postulated that equation (2.40)

can be looked upon as arising from classical square integrable wave functions Ψ(q, p; t) in

the Hilbert space of classical phase-space variables Ψ(q, p; t), obeying the time-development

equation.

∂Ψ(q, p; t)

∂t
= (

∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q
)Ψ(q, p; t) = iL̂Ψ(q, p; t) (2.41)

Rajagopal and Ghose (2016) introduced the Hermitian operator λBi = −i∂Bi. The Liouville

equations for the classical wave function and its adjoint (sum on repeated indices assumed)

in the new variables

i
∂

∂t
Ψ(x, t) = (

∂

∂B⋆
i

∂

∂λEi

B⋆
i λEi)B

⋆
i )Ψ(x, t) (2.42)

13



Therefore,

i
∂

∂t
Ψ⋆(x, t) = (

∂

∂B⋆
i

∂

∂λEi

B⋆
i λEi)B

⋆
i )Ψ

⋆(x, t) (2.43)

2.4.2 Relativistic Position of N - Particles
According to Lienert et al.,(2017), the non-relativistic quantum mechanics of N particles in

three spatial dimensions, the wave function

Ψ(q1, q2 . . . , qN , t) (2.44)

is a function of 3N position co-ordinates and one time co-ordinate. In relativistic setting, they

replaced equation (2.44) byΦ(t1, (q1, q2, . . . , qN )). The relation betweenΨ and ϕ is reference

frame to which Ψ refers to set of all time variables in Φ equal to

Φ(q1, q2, . . . , qN), t = Φ((t1, q1), (t2, q2) . . . (tN , qN)) (2.45)

A time evolution law for Φ is a law that determines Φ on its entire domain from initial data.

The initial datum is Φ(t = 0). The kind of evolution analogous to the Schrödinger equation,

we set ℏ = 1, then

i
∂Φ

∂t
= HΨ (2.46)

is a partial differential equation.

Multi-time wave functions as shown in equation (2.44) arise naturally when considering a

particle-position representation of a quantum state in a relativistic setting.

2.4.3 Probability Position of a Particle
For a particle moving in R3, the wave function Ψ is in Hilbert space L2(R3). The function

Ψ corresponds to probability density and is denoted by ∥Ψ∥. Gagne (2013) stated that the

function Ψ(x, t) of position x and time t is such that the probability of a particle being found

in a region ∆ is given by
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pr(Ψ, x) ∈ ∆ = X∆Ψ(x, t) =

∫
dx∥Ψ(x, t)∥2 = 1 (2.47)

and

⟨Ψ, XR3⟩ = ⟨Ψ,Ψ⟩ (2.48)

Therefore

pr(Ψ, x ∈ R3) = 1 (2.49)

In his work Gagne (2013) showed that, for a given projection Pk : H → K, a system is

in K if Ψ ∈ K and ⟨PKΨ,Ψ⟩ = 1,so ∥Ψ∥2 = 1. The system is not in K if Ψ /∈ K and

⟨PKΨ,Ψ⟩ = ⟨0,Ψ⟩ = 0, where PKΨ,Ψ is the probability that a state Ψ lies in K.

A non stationary paticle in a given region posseses energy velocities andmomentum. From the

theoretical investigations at higher energies, the velocity of Dirac electron is not proportional

to momentum operator. To link the relativistic and non-relativistic treatments, Barnett (2017)

used Fold-Wouthuysen transformation, Ψ → Ψ⋆ = UΨ where U is a 4 × 4 matrix as it is in

low energy limit of the form that leads to Schrödinger equation. He did this by introducing

a unitary operator eiS = eβα.P
θ
p to transform spinor to Ψ′ = eiSΨ. The transformation

diagnoses the Dirac Hamiltonian

H ′ = eiS = β(P 2 +m2)
1
2 (2.50)

So the transformed Dirac equation is

i
∂Ψ′

∂t
= β(P 2 +m2)

1
2 (2.51)

2.5 Properties of Operators in Hilbert Space

Several theorems, lemma and propositions based on properties of operators shall be essential

in the sequel especially in obtaining our results as follows;
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Theorem 2.5.1: (Remling, 2002)

Let S, T ∈ B(H), c ∈ C, then:

(i) T ⋆ ∈ B(H)

(ii) (S + T )⋆ = S⋆ + T ⋆

(iii) (cT )⋆ = c̄T ⋆

(iv) (ST )⋆ = T ⋆S⋆

(v) (ST )⋆ = T ⋆S⋆

(vi) (T ⋆)⋆ = T

(vii) If T is invertible then T ⋆ is also invertible and T ⋆T (−1) = T (−1)T ⋆

(viii) ∥T∥ = ∥T ⋆∥, ∥TT ⋆∥ = ∥T ⋆T∥ = T∥2.

Theorem 2.5.2: (Remling, 2002)

Let U ∈ B(H). The following statements are equivalent:

(i) U is unitary

(ii) U is bijective and ⟨Ux, Uy⟩ = ⟨x, y⟩ for every x, y ∈ H

(iii) U surjective and isometric ∥Ux∥ = ∥x∥.

Theorem 2.5.3 (Remling, 2002)

Let P ∈ B(H). Then the following are equivalent:

(i) P is a projection

(ii) 1− P is a projection

(iii) P ⋆ = P and a self adjoint

(iv) P 2 = P and P is normal.
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Proposition 2.5.4:(The polarization identity) (Kreyszig, 1978)

Let S be a sesquiliear form and Let q(x) = S(x, x)

then

S(x, y) =
1

4
[q(x+ y)− q(x− y) + iq(x− iy)− iq(x+ iy)] (2.52)

Theorem 2.5.5 (Projection): (Kreyszig, 1978)

Let M be a closed linear subspace of Hilbert space H. Then every a ∈ H can be uniquely

written as a = a∥ + a⊥ witha∥ ∈ Mand a⊥ ∈ M⊥and H = M
⊕

M⊥where M⊥is the

orthogonal complement ofM .

Theorem 2.5.6: (Sunder, 2016)

Let M be a closed subspace of H. Let ei : i ∈ I be any orthonormal bais for M and let

ej : j ∈ J be any orthonormal set such that ei : I ∪ J is orthonormal basis for H. Then the

index I and J are disjoint then the following conditions on vector x ∈ H are equivalent.

x ⊥ y ∀y ∈M

x =
∑

( j ∈ J), x⟨x, ej⟩ej

Theorem 2.5.7: (Gagne, 2013)

(Parallelogram identity)

let E be a normed space. Then there is an inner product on E which gives rise to the norm if

and only if the parallelogram identity ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 is satisfied for

allx, y ∈ E

Theorem 2.5.8: (Remling, 2002)

The product of two normal operators is itself normal if and only if the operators commute.

Theorem 2.5.9: (Gagne, 2013)

If T is self adjoint operator on Hilbert spaceH then ∥T∥ = sup{| ⟨Tx, x⟩ |: ∥x∥ = 1}.
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Remark 3

For the sake of further reference, the proves for theorems (2.5.10), (2.5.11) and (2.5.14) are

provided.

Theorem 2.5.10: Remling (2002)

If T is idempotent self adjoint operator then T is a projection ofM = {x ∈ H : Tx = x}

Proof. Let Z ∈ H and write it as Z = TZ + (Z − TZ)

T (TZ = TZ) so TZ ∈M

and Z − TZ ∈M⊥.

If x ∈M , then

⟨x, Z − TZ⟩ = ⟨x, Z⟩ − ⟨x, TZ⟩ = ⟨x, Z⟩ − ⟨Tx, Z⟩ = 0 (2.53)

Theorem 2.5.11: Akhiezer and Glazman (2013)

If P is a nonzero orthogonal projection, then ∥P∥ = 1.

Proof. If x ∈ H and Px ≠ 0, then the use of the Cauchy-Schwarz inequality implies that

∥P∥ = ⟨Px,Px⟩
∥Px∥ = ⟨x,P 2x⟩

∥Px∥

=
⟨x, Px⟩
∥Px∥

≤ ∥x∥ (2.54)

if P ̸= 0, then there is an x ∈ H with Px ̸= 0 and ∥P (Px)∥ = ∥Px∥ thus ∥P∥ ≥ 1.

Proposition 2.5.12: Degli Esposti et al. (2006)

Suppose that T is a bounded linear operator on a separable Hilbert space H such that there is

an orthonormal, then

e∞(n=1) :
∑∞

(n=1)⟨Ten⟩2 ≤ ∞
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for any orthogonormal basis fn∞(n=1) then,

∑∞
(n=1) ∥Tfn⟩2 =

∑∞
(n=1) ∥Ten∥2

Theorem 2.5.13: Conrad (1998)

(Fixed Point Theorem)

Let (X, d) be a complete metric space and f → X be a map such that d(f(x), f(x)) ≤ cd(, x)

for some 0 ≤ c ≤ 1 and for all x, x ∈ X . Then f has a unique fixed point in X . Moreover,

for any x0 ∈ X . The sequence iterates x0, f(x0), f(f(x0)) converges to the fixed point of

f(x). Where d(f(x), f(x)) ≤ cd(x, x). Then f(x) is called contraction.

Theorem 2.5.14: Putnam (2012)

IfB is any bounded operator and ifA is normal and not necessarily bounded and ifBA ⊂ AB

then BA⋆ ⊂ A⋆B

Proof. From disjoint Borel sets of complex plane given as

Q = K(α1)BK(α2) = 0

K(α1) denotes the projection operator with Borel set α by spectral familyKz.

Suppose α1 and α2 are bounded then

B
∫
(
α2)ZdKzx = ABK(α2)x

Applying the operatorK(α1) Then

K(α1)B
∫
(α2)

ZdKz =
∫
(
α1)ZdKzBKα2

If z1 and z2 are arbitrary numbers in α1 and α2 respectively, then the above equation can be

written as ∫
(α1)

(Z − Z1)dKzQ = Q
∫
(α2)

(Z − Z2)dKz + (Z2 − Z1)Q

Let α denote any Borel set then

K(α)B = K(α)BI = K(α)B(K(α)) +K(α′) = K(α)BK(α)

α′ is the complement of α. Similary,
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BK(α) = K(α)B(K(α))

Therefore,

K(α)B = BK(α).

This implies that

BA⋆ ⊂ A⋆B

Remark 4

The above properties and theorems of Hilbert space shall be used in the derivation and study

of applications of Schrödinger equation using Hilbert space approach. The study shall also

establish the correlation of the abstract mathematical application of the Hilbert space operators

in relation to the application of Schrödinger equation in quantum mechanics.
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CHAPTER THREE
METHODOLOGY

3.1 General Approach
For the successful completion of this study, background of quantum mechanics, Hilbert space

operators and their application on Quantum mechanics is required.

3.2 Technical Approach
Specifically, for effective completion of this work the following approaches were employed.

The properties of Hilbert space operators, Reimann’s intergral compact operators, norms of

linear operators, Hilbert Schmidt operator, normal operators, Neumann Integral Lebesque

integral, Reimann’s integral and spectrum.

3.2.1 Hilbert Space Operators
In this section, we would like to review known results on Hilbert space operators which in-

clude properties and theorems that were very instrumental in obtaing our results.

Young (1988) stated that, Hilbert space is a complete inner product with the following prop-

erties.

(i) Orthogonally property ⟨x, y⟩ = 0

(ii) Self- adjointness ⟨x, y⟩ = ⟨y, x⟩

(iii) Unitary ⟨x, x⋆⟩ = 1 if and only if x = x⋆

(iv) Positivity ⟨x, x⟩ ≥ 0 = ∥x∥2

(v) Nullity property ⟨x, x⟩ = 0 if and only if x = 0.

From section 1.1 the properties of an operator on Hilbert space are as follows. If T is an

operator on Hilbert spaceH then:

(i) T is normal if TT ⋆ = T ⋆T

(ii) T is self-adjoint (or Hermitian) if T = T ⋆

(iii) T is positive if ⟨Tx, x⟩ ≥ 0 for all x ∈ H .
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(iv) T is unitary if TT ⋆ = T ⋆T = 1.

These properties are applied in establishing the electromagnetic wave equation and Einstein

theory of relativity in correlation with Hilbert space operator as well as in the alternative

derivation of Schrödinger equation. In addition, these properties are useful in establishing the

application of Hilbert space operators in quantum observable.

Theorem (3.2.1) is useful in establishing the probability position of a particle.

Theorem 3.2.1 (Spectral Theorem)

Let A be a compact self-adjoint operator on a Hilbert space H with a complete orthonormal

system of eigenvectors v1, v2, v3… with corresponding eigenvalues 1, 2, 3…. Let Pi : H→H

be the one dimensional projection onto span v1, v2, v3… mapped by x → x, vi, then for all

x ∈ H can be written as

x =
∑∞

i=1 Pix

A =
∑∞

i=1 Pix

From the existing literature, orthonormal system B′ = u1, u2, u3,… forms a basis for vectors

in vector space S. Therefore if we add an arbitrary orthonormal basis for S⊥ to the set B′ we

obtain a complete orthonormal system B′ = v1, v2, v3,… . Given a complete orthonormal

basis B we may write any x ∈ H as

x =
∑∞

i=1⟨x, vi⟩vi.

With our definition of Pi as Pix = ⟨x, vi⟩ for all i ∈ N we have

x =
∑∞

i=1 Pix

and since our basis consist of eigenvectors we also have

Ax =
∑∞

i=1 λi⟨x, vi⟩vi =
∑

( i = 1)∞λiPix.

This results to

A =
∑∞

i=1 λiPi.
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SupposeH is a separable Hilbert space and T ∈ B(H). Then T is a Hilbert- Schmidt operator

if there exist an operator basis e∞n :
∑∞

n=1 ∥Ten∥2 <∞ (Degli Esposti et al 2006)

3.2.2 Integrals

(a) Reimann’s Integrals

Reimann’s integrals are useful in the application of Hilbert space operators in quantum ob-

servables such as in describing the determination of position of a particle in three dimensions.

A fuction f is said to be Riemann integrable on [a, b] if there is a number Lwith the following

property. For every ϵ > 0 there exists a δ > 0 such that |σ − L| < ϵ. If σ is Riemann’s sum

of f over partition P of [a, b] such that ∥P∥ < δ. Then L is Riemann’s integral of f over∫ b

a
f(x)dx = L

According to Karatsuba and Voronin (2011), the following are properties of Reimann’s inte-

gral:

(i) Let f be a Riemann integrable function on [a, b] If f ≥ 0 on [a, b], then

∫ b

a
f(x) ≥ 0.

If f is continuous on [a, b] and f > 0 on [a, b], then

∫ b

a
f(x) > 0.

(ii) Let f be a Riemann’s integrable function on [−a, a]. If f is an odd function, then

∫ a

−a

f(x) = 0. (3.1)

If f is an even function, then

∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx. (3.2)

23



(iii) Let f be a Riemann integrable function on [a, b]. If m,M are real numbers such

thatm ≤ f ≤M on [a, b], then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a). (3.3)

(iv) Let f and g be Riemann integrable functions on [a, b]. If f ≤ g on [a, b], then

∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx. (3.4)

(v) Let f be a Riemann integrable function on [a, b]. Then its absolute value |f | is a

Riemann integrable function on [a, b] and

∫ b

a

|f(x)dx| =
∫ b

a

| f(x) | dx. (3.5)

b) Neumanns Integral

Neumann’s integral follows from Fredholm integral. Landweber (1951) stated that, given that

the Fredholm integral equation is in the form

f(x) = λ

∫ b

a

k(x, y)f(y)dy + g(x) (3.6)

where k is the continuous kernel function and g and f are functions.

A function is said to be Neumanns integrable if it is in the form,

f0(x) = g(x) λ0

∫
f(x) =

∫ b

a

k(x, y) + fn−1(y)dy λn;n > 1 (3.7)

where λ is the eigen value.

c) Lebesque Integral

The properties of Lebesque integral has been used in this study in the determination of prob-

ability position of a particle. For a Lebesque integral, Burkill (2004) stated that Suppose that

f : R→C is a non-negative real-valued function, then f is Lebesque integrable if
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∫
fdµ =

∫∞
0
f ⋆(t)dt.

Using the ”partitioning the range of f ” philosophy, the integral of f should be the sum over

t of the elementary area contained in the thin horizontal strip.

The knowledge on the spaceL2
σ was of great use in this study. By Carter andVanBrunt (2000),

let a non degreasing function of a bounded variation σ(t) −∞ < t < σ) be given then it is

left countinous : σ(t− 0) = σ(t). Such fuctions are refered to as distribution function. From

this distribution function, it is possible to construct a measure analogous to lebesque measure

of interval [a, b] for a ≤ b. This can be replaced by σ - length σ(b + 0)− σ(a). This means,

some intevals may have σ- length different from zero and some proper intervals may have σ-

length equal to zero. The measure determined by this σ- length is called σ-measure and is a

measurable function corresponds to Lebesque- Stieltjes integral.

We consider a linear space σ –measurable functions f for which Lebesque- Stieltjes integral

is

∫ ∞

−∞
| f(t) |2 dσ(t). (3.8)

Metrizing it by means of metric generated by scalar product then,

(f, g) =

∫ ∞

−∞
f(t) ¯g(t)σd(t). (3.9)

This linear space is complete and therefore is a Hilbert space denoted by L2
σ.

3.2.3 Properties of Einstein Theory of Relativity

To obtain the correlation of Hilbert space operators with Einstein theory of relativity, we

used properties of Hilbert space operators, derivations and properties of Einstein theory of

relativity. Levy-Leblond (1976) derived the special relativity. He stated that, if the observer

O′ in a system S ′ looks at a ray of light passing through the origin and observes that it satisfies

the equation.

x′ = ct′ (3.10)
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where x is the displacement and c is the velocity of light

An observerO in a system S looking at the same ray, he observes that it satisfies the equation

Ax+Bct = Gx+Dct

(A−G)x = (D −B)ct (3.11)

where A,B,G and D are constants.

Since the velocity of light is c for all observers then

A−G = D −B (3.12)

Therefore for observer O

x = ct. (3.13)

If observer O′ is looking at a ray going opposite direction then equation (3.13) becomes

x′ = −ct′. (3.14)

To observer O, this ray satisfies

Ax+Bct = −Gx−Dct (3.15)

(A+G)x = (D +B)ct. (3.16)

Since the velocity of light is c for all observers then

(A+G) = (D +B). (3.17)

Adding equation (3.12) and (3.17) we obtain A = D and B = G.

Thus if observers O and O′ can agree that their systems are moving past each other with
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velocity v, we can now write the transformation equation as

x′ = Ax− Avt (3.18)

ct′ = −Avx
c
+ Act. (3.19)

We suppose that there is a measuring rod of length L, fixed with respect to S, and with one

end at the origin. Also suppose there is another rod of length L with one end at the origin of

S ′, then the apparent lengths of the rods must be the same. Thus according to the principle of

relativity, there should be no difference between the observations of O and O′.

L

A
= LA(1− v2

c2
) (3.20)

A =
1√

1− v2

c2

. (3.21)

Substituting equation (3.20) in (3.18) and (3.19) respectively we obtain the Lorentz transfor-

mation as shown in equation (3.22) and (3.23)

x′ =
(x− vt)√
1− v2

c2

(3.22)

ct′ =
(ct− vt)

1− v2

c2

. (3.23)

Equation (3.22) and (3.23) are applicable in establishing the correlation of Einstein theory of

relativity with Hilbert space operators.

3.2.4 Electromagnetic Wave Equation

By the use of properties of Hibert space operators, Maxwell differential equations, and the

existing derivation of electromagnetic wave equation, we were able to obtain the the correla-

tion of electromagnetic wave equation and Hilbert space operators. The properties of Hilbert

space operators follows from section (3.2.1), the Maxwell differential equations and the ex-

isting derivation of electromagnetic wave equation follows from section (2.1).
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3.2.5 Quantum Observables

Quantum observables include, position, momentum and energy. This study has focused on

describing probability position of a particle in three dimension, momentum and energy which

particles possess. By Heslot (1985), Let g be an observable, and ĝ the corresponding self-

adjoint operator the value of g when the system is in the state described by the normalized

vector | Ψ⟩ is given by ⟨Ψ | ĝ | Ψ⟩.

To describe the probability position of a particle in three dimension using Hilbert space op-

erators, literature on probability position of a particle in section 2.4.3 is used together with

Hilbert space operators. To describe the momentum of a particle, we used the concept on

how properties of Hilbert space operators correlate with momentum as well as the Fourier

transform of Ψ(x) in momentum representation.

El Naschie (2013) stated that

⟨P | Ψ⟩ =
∫
dx⟨P | x⟩⟨x | Ψ⟩. (3.24)

Inserting a complete set of momentum states we obtain

⟨x | P̂ | Ψ⟩ =
∫
dP ⟨x | P ⟩⟨P | P̂ | Ψ⟩ =

∫
dpPx | P ⟩⟨P | Ψ⟩. (3.25)

From the equation (3.25) we obtain

⟨P | x | P ⟩ =
∫

ℏ
i
⟨x | ψ⟩. (3.26)

Therefore, equation (3.29) becomes

⟨x | P̂ | Ψ⟩ =
∫
dp

ℏ
i

∂

∂x
⟨x | P ⟩⟨P | ψ⟩ (3.27)

⟨x | P̂Ψ |⟩ =
∫
dp

ℏ
i

∂

∂x
⟨x | P ⟩. (3.28)

The operator for the linear momentum in the x direction is

Px =
ℏ
i

∂

∂x
, (3.29)
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in the y direction

Py =
ℏ
i

∂

∂y
(3.30)

and in the z direction

Pz =
ℏ
i

∂

∂z
. (3.31)

Therefore the momentum in three dimensions is given as

P 2
x

2m
+
P 2
y

2m
+
P 2
z

2m
=

ℏ
2m

(
∂

∂x
+

∂

∂y
+

∂

∂z
). (3.32)
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CHAPTER FOUR
THE SCHRÖDINGER EQUATION AND OPERATORS IN HILBERT

SPACE

4.1 Electromagnetic Wave Theory and Einstein Theory of Relativity in

Correlation with Operators in Hilbert Space
This section deals with the correlation of operators in Hilbert space with electromagnetic

wave equation. The solutions are obtained from the properties of operators in Hilbert space

as shown in section (3.2.1) as well as the existing derivation of electromagnetic wave equation

from the existing literature in section 2.1.

We have also described the correlation of Einstein theory of relativitywithOperators inHilbert

space using the existing literature in section 2.2 and properties of Operators in Hilbert space

as listed in section 3.2.1.

4.1.1 Correlation between Operators in Hilbert Space and Electromag-

netic Wave Theory
Hilbert Space is a complete inner product space. Dirac invented an alternative for inner prod-

uct that leads to bras ⟨. | and kets | . | (Roberts, 1966). That is,

⟨x, y⟩ → ⟨x | y⟩.

Bra-kets have the following properties

(i) ⟨x | y⟩ = 0 if both x and y are orthogonal

(ii) ⟨x | x⟩ = 0 iff x = 0 (null property)

(iii) ⟨x | x⟩ ≥ 0 = ∥x∥2

(iv) ⟨x | ay + bz⟩ = a⟨x | y⟩+ b⟨x | z⟩

Properties of dot product are similar to that of inner product. They include:

(i) x.x = |x|2

(ii) x.y = y.x
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(iii) a.(b+ c) = a.b+ a.c

(iv) ea.b = e(a.b) = a(eb) for e is a scalar and a, b, c are vectors

Electromagnetic waves are electric andmagnetic waves that travel perpendicular to each other.

Young (1988) showed that, these waves are orthogonal and can be represented as

⟨E,B⟩ = 0.

They have Amplitude, Wavelength and Frequency.

Electromagnetic wave equation is a second order partial differential equation which describes

electromagnetic waves through a medium or a vacuum. The vector differential operator is

given as

▽⃗ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂. (4.1)

Maxwell equations describe the world of electromagnetic, that is, how electric and magnetic

field interact. Applying the properties of inner product on Maxwell equations, they can be

represented as follows;

⟨∇⃗, E⃗⟩ = 0 (Gauss’ law of electricity) (4.2)

⟨∇⃗, B⃗⟩ = 0 (Gauss law of magnetism) (4.3)

∇⃗ × E⃗ =
∂B⃗

∂t
(Faraday’s law induction) (4.4)

∇⃗ × B⃗ = µ0ϵ0
∂E⃗

∂t
(Ampere’s law). (4.5)

In the derivation of Schrodinger equation, procedure used byWang (1986)is used but applying

properties of Hilbert space operators. For non-conducting media, or in a vacuum, there are

no sources and hence, ρ = 0,and σ = 0 Where μ and ε are permeability and permittivity of
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free space respectively. Since ∇⃗ and E⃗ are both vectors, the Maxwell equation (4.2) can be

written as;

⟨∇⃗, E⃗⟩ = 0. (4.6)

Taking the curl of Faraday’s law (equation 4.4) becomes,

∇⃗ × (∇⃗ × E⃗) = −∂(∇⃗ × B⃗

∂E
). (4.7)

Considering the left hand side of equation (4.7) we have

∇⃗ × (∇⃗ × E⃗) = ∇⃗, (∇⃗, E⃗ − E⃗(∇⃗, ∇⃗)). (4.8)

From property (iii) of inner product equation (4.8) becomes

∇⃗ × (∇⃗ × E⃗) = ⟨∇⃗, ⟨∇⃗, E⃗⟩⟩ − ⟨⟨∇⃗, ∇⃗⟩, E⃗⟩. (4.9)

By the first of Maxwell equation, ⟨(∇⃗, E⃗⟩ = 0 in vacuum. Therefore,

∇⃗ × (∇⃗ × E⃗) = −⟨⟨∇⃗, ∇⃗⟩, E⃗⟩. (4.10)

Consider right hand side of equation (4.7), ∂(∇⃗×B⃗)
∂E

substituting the Ampere’s law for a charge

and current-free region we have
∂(∇⃗ × B⃗)

∂t
=

∂

∂t
µ0ϵ0

∂E⃗

∂t
, (4.11)

hence the equation we obtain is

⟨⟨∇⃗, ∇⃗⟩, E⃗⟩ = − 1

⟨c, c⟩
∂2E⃗

∂t2
. (4.12)

We find that each component of the electric field satisfies equation (4.12) which is the derived

wave equation using properties of inner product. The quantity c is defined as the speed of the

wave and µ0ϵ0 =
1

⟨c,c⟩ .
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4.1.2 Correlation between Hilbert Space Operators and Einstein The-

ory of Relativity

Einstein theory of relativity can be derived starting from the relativity principle and the clas-

sical Lorentz’s law (Hamdan et al. 2007) as shown in equation (4.13)

F⃗ = q(E⃗ + v⃗ × B⃗) (4.13)

Where, q charged particle

v⃗ velocity of the particle

E⃗ electric field and

B⃗ magnetic field flux density

In this work, Einstein theory of relativity is derived following the procedure followed by

Hamdan et al. (2007) but using properties of Hilbert space operator.

Since q is a scalar quantity and F⃗ , B⃗ and v⃗ are vectors quantities, applying properties of inner

product, the Cartesian components of equation ( 4.13) are given by

Fx = qEx + q⟨vy, Bz⟩ − q⟨vz, By⟩ (4.14)

Fy = qEy + q⟨vz, Bx⟩ − q⟨vx, Bz⟩ (4.15)

Fz = qEz + q⟨vx, By⟩ − q⟨vy, Bx.⟩ (4.16)

Applying relativity principles on equations (4,14),(4.15) and (4.16) we obtain

F ′
x = qE ′

x + q⟨v′y, B′
z⟩ − q⟨v′z, B′

y⟩ (4.17)

F ′
y = qE ′

y + q⟨v′z, B′
x⟩ − q⟨v′x, B′

z⟩ (4.18)

F ′
z = qE ′

z + q⟨v′x, B′
y⟩ − q⟨v′y, B′

x⟩. (4.19)

In the derivation of relativistic energy, the three-vector relativistic velocity transformation is
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necessary. According to Hamdan et al., (2007), the relativistic velocity equations but applying

the properties of inner product can be written as

v′x =
vx − u

1− ⟨vx,u⟩
⟨c,c⟩

(4.20)

v′y =
vy

γ
(
1− ⟨vx,u⟩

⟨c,c⟩

) (4.21)

v′z =
vz

γ
(
1− ⟨vx,u⟩

⟨c,c⟩

) . (4.22)

where scalar factor γ is fixed by applying the relativity principle γ = 1√
1− ⟨u,u⟩

⟨c,c⟩

In classical physics, a particle with rest massm0 with velocity v has a momentum of p = m0v

and a kinetic energy of T = 1
2
m0⟨v, v⟩ and in relativistic physics, p = m0v

1− ⟨v,v⟩
⟨c,c⟩

= γm0v = mv

If we consider two inertial systems S and S ′, then charged particle q when viewed from S the

components of momentum are given by the following as stated by Vecchiato (2017),

px = mvx (4.23)

py = mvy (4.24)

pz = mvz. (4.25)

When viewed from S ′, the momentum is given by

p′x = m′vx
′ (4.26)

p′y = m′vy
′ (4.27)

p′z = m′vz
′. (4.28)

From (4.23),
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vx =
px
m

(4.29)

From (4.26)

v′x =
p′x
m′

(4.30)

Equating (4.30) and equation (4.20) we obtain

p′x
m′ =

vx − u

1− ⟨vx,u⟩
⟨c,c⟩

. (4.31)

Substituting equation (4.29) in (4.31) we obtain

p′x
m′ =

px −mu

m(1− ⟨u,vx⟩
⟨c,c⟩ )

. (4.32)

Observers of frame S measures the rest mass m0, observers from S ′ measure the mass m′.

Assuming the charged particle is at rest then

vx = u = 0. (4.33)

Observers of frame S ′ measures the rest mass m0, observers from S measure the mass m.

Assuming the charged particle is at rest then the component of momentum if combine (4.21),

(4.24) and (4.27) we deduce

p′y = m′v′y = mvy = py (4.34)

p′z = m′v′z = mvz = pz. (4.35)

The relativistic mass in both frames is expressed as

m =
m0√

1− ⟨v,v⟩
⟨c,c⟩

(4.36)

m′ =
m0√

1− ⟨v,v⟩
⟨c,c⟩

. (4.37)

Multiplying the equation for scalar factor γ bym2
0⟨c, c⟩⟨c, c⟩ we obtain
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√
1− ⟨v,v⟩

⟨c,c⟩ (m
2
0⟨c, c⟩⟨c, c⟩) = m2⟨c, c⟩⟨c, c⟩ (4.38)

⟨c, c⟩⟨c, c⟩γ2m2
0 − ⟨c, c⟩γ2m2

0⟨v, v⟩ = m2⟨c, c⟩⟨c, c⟩ (4.39)

γ2m2
0⟨c, c⟩⟨c, c⟩ − γ2m2

0⟨v, v⟩, ⟨c, c⟩ = m2⟨c, c⟩⟨c, c⟩. (4.40)

It is noted that

⟨p, p⟩ = γ2(m2
0⟨u, u⟩) = m2⟨v, v⟩. (4.41)

The root for the first term in equation (4.40) is obtained as,

ϵ = m⟨c, c⟩

√
1− ⟨v, v⟩

⟨c, c⟩
= γm0⟨c, c⟩ = m⟨c, c⟩. (4.42)

Therefore,

ϵ2 = ⟨c, c⟩⟨p, p⟩+m2
0⟨c, c⟩⟨c, c⟩. (4.43)

This is the derived equation for relativistic energy which is used in the derivation Schrödinger

equation using of Hilbert space operator.

4.2 The Derivation of Schrödinger Equation using Operators in Hilbert

Space

The results obtained in section 4.1.1 and 4.1.2 are utilized in the derivation of Schrödinger

equation using Hilbert space approach.

Schrödinger equation was first derived by Erwin in 1926. Ward and Volkmer (2006) derived

the Schrödinger equation using electromagnetic wave theory and Einstein theory of relativity

as used by Erwin, however he extended the wave equation for classical fields to photons and

generalized to non-zero rest mass particles and using approximations consistent with non-

relativistic particles. In this study, we used the same approach as used by Ward and Volkmer

but applied the properties of Operators in Hilbert space.
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Equation (4.12) obtained from derivation of electromagnetic wave equation can be written as,

⟨⟨∇,∇⟩, E⃗⟩ − 1

⟨c, c⟩
∂2E⃗

∂t2
= 0. (4.44)

This satisfies

E(t, x) = E0e
i(kx−ωt) (4.45)

where k = 2π
λ
and ω = 2πf are spatial and temporal frequencies respectively. Substituting

equation (4.45) in (4.44) we obtained

(
⟨∇x,∇x⟩, E0⟩ −

1

c2
∂2

∂t2

)
E0e

i(kx−ωt) = 0. (4.46)

In a vacuum, the speed of light is given as c = λ, a wave propagation speed and k = ω
c
. From

Einstein and Compton, the energy of photon is ϵ = hv = ℏω and the momentum of photon is

p =
h

λ
= ℏk. (4.47)

Therefore equation (4.45) is written as

E(x, t) = E0e
i
ℏ (px−ϵt). (4.48)

Substituting equation (4.48) in (4.44) we obtain,

(
⟨⟨∇x,∇x⟩, E0⟩ −

1

⟨c, c⟩
∂2

∂t2

)
E0e

( i
ℏ (px−ϵt)) = 0. (4.49)

on differentiating equation 4.49 we obtain

− 1

h2

(
⟨⟨p, p⟩, E0⟩+ ϵ2

1

⟨c, c⟩
, E⃗0⟩

)
e

i
h
(px−ϵt) = 0. (4.50)

Since E,Ψ ∈ S, where S is a vector space, then replacing electric field, E with Ψ, the wave

function equation (4.45) in term of wave function can be written as,

Ψ(x, t) = Ψ0e
i
ℏ (px−ϵt). (4.51)

Replacing E with Psi equation (4.50) becomes
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− 1

h2

(
⟨⟨p, p⟩,Ψ0⟩+ ϵ2

1

⟨c, c⟩
, Ψ⃗0⟩

)
e

i
h
(px−ϵt) = 0. (4.52)

Now, the relativistic total energy obtained from the results in section 4.2.2 is given as

ϵ2 = ⟨p, p⟩⟨c, c⟩+m2⟨c, c⟩⟨p, p⟩ (4.53)

therefore,

ϵ = m⟨c, c⟩
√

1 + ⟨p,p⟩
m2⟨c,c⟩

ϵ ≈ m⟨c, c⟩(1 + 1

2

⟨p, p⟩
2m2⟨c, c⟩

) = m⟨c, c⟩+ τ (4.54)

where τ is the classical kinetic energy.

Thus equation (4.51) becomes

Ψ(x, t) = Ψ0e
i
ℏ (px−mc2t−τt)

= e−
i
ℏmc²tΨ0e

i
h
(px−τt). (4.55)

Taking Ψ0e
i
h
(px−τt) = Φ then it follows,

Ψ(x, t) = e−
i
ℏmc2tΦ. (4.56)

On differentiating equation (4.56) with respect to time (t) we obtain

∂Ψ

∂t
= −m

ℏ
⟨⟨c, c⟩,Φ⟩e−

i
ℏmc2t + e(−

i
ℏmc2t)∂Φ

∂t
. (4.57)

Carrying out the second derivative of equation (4.57) we have

∂2Ψ

∂t2
=

(
−m

2⟨c, c⟩⟨c, c⟩
ℏ2

e−
i
ℏmc2tΦ− 2i

ℏ
m⟨c, c⟩∂Φ

∂t

)
+ e(−

i
ℏmc2t)Φ. (4.58)

The term e−
i
ℏmc2t ∂Φ

∂t
is very small and therefore it can be discarded. The term in brackets is

very large thus, using this approximation in the Klein-Gordon equation we obtain

e−
i
ℏmc2t[⟨∇2Φ2,Φ⟩+ 2im

ℏ
∂Φ

∂t
] = 0 (4.59)

38



⟨∇2,Φ⟩+ 2im

ℏ
∂

∂t
= 0 (4.60)

− ℏ2

2m
⟨⟨∇,∇⟩,Φ⟩ = iℏ

∂

∂t
Φ (4.61)

where Φ is the non-relativistic wave function.

Therefore equation (4.61) is the derived Schrödinger equation for free particle.

4.3 Application of Properties of Hilbert Space Operators in Quantum

Observables
Mostafazadeh (2004) investigated effects of allowing the Hilbert space of a quantum system

to have a time-dependent metric. He stated that, for a given possibly non-stationary quantum

system, the requirement of having a unitary Schrödinger time-evolution identifies the metric

with a positive-definite dynamical invariant of the system. Therefore the geometric phases

are determined by the metric. We construct a unitary map relating a given time-independent

Hilbert space to the time-dependent Hilbert space defined by a positive-definite dynamical

invariant. This map defines a transformation that changes the metric of the Hilbert space but

leaves the Hamiltonian of the system invariant.

Schrödinger equation is applied in determining the solution of quantum observables which

include position of a particle denoted by x, momentum of a particle denoted by p and energy

of a particle denoted by ϵ. In this work, properties of operators in Hilbert space have been

applied in determining these quantum observables. Note that all quantum observables are

self adjoint. An observable may only assume values which belong to the spectrum of its

corresponding operator.

4.3.1 Determination of the Probability Position of a Particle usingHilbert

Space Operators in three-Dimensition
To determine the position of a particle in three- dimensions using properties of Hilbert space

operators, we present the following results.

Theorem 4.4.1

39



Let Ψ ∈ S, c ∈ C. Where S is a vector space. Then

(i) Ψ⋆ ∈ S

(ii) (cΨ)⋆ = c̄Ψ⋆

(iii) Ψ⋆⋆ = Ψ

(iv) If Ψ is invertible then Ψ⋆ is also invertible and (Ψ⋆)−1 = (Ψ−1)⋆

(v) ∥Ψ∥ = ∥Ψ⋆∥, ∥ΨΨ⋆∥ = ∥Ψ⋆Ψ∥ = ∥Ψ∥2(C⋆)

Proof. (i) Sup{∥Ψy∥} =sup {| ⟨Ψy, x⟩ |}=sup {| ⟨y,Ψ⋆x⟩ |}=sup {∥Ψ⋆∥} So Ψ⋆ ∈

S and Ψ = Ψ⋆. For all x, y ∈ H

(ii) ⟨(cΨ)⋆y, x⟩ = ⟨cΨ⋆y, x⟩ = ⟨Ψ⋆y, cx̄⟩ = ⟨y, c̄Ψx⟩

From the definition of adjoint operator

⟨y, cΨx⟩ = ⟨y, cΨ⋆x⟩, thus (cΨ) = cΨ⋆, for all x,∈ H

(iii) ⟨x,Ψ⋆⋆y⟩ = ⟨Ψ⋆x, y⟩ = ⟨y,Ψ⋆x⟩ = ⟨x,Ψ⟩

Therefore, Ψ⋆⋆ = Ψ

(iv) If Ψ is invertible, then ΨΨ(−1) = Ψ(−1)Ψ = I ,

Since I = I⋆, then Ψ⋆(Ψ−1)⋆ = (Ψ−1)⋆Ψ⋆) = I , therefore, Ψ⋆ is invertible and

(Ψ−1)⋆ = (Ψ⋆)−1

(v) ∥Ψ∥ = ∥Ψ⋆∥ follows from (i), ∥Ψx∥2 = ⟨Ψx,Ψx⟩ = ⟨ΨΨ⋆x, x⟩ = ⟨x,Ψ⋆Ψx⟩

Therefore, ∥Ψ⋆∥ = ∥Ψ⋆Ψ∥ = ∥Ψ∥2

From the above theorem, the corollary below follows

Corollary 4.4.2

Let Ψ ∈ S, Then:

If Ψ = Ψ⋆ then Ψ is self adjoint

If ΨΨ⋆ = Ψ⋆Ψ = 1 then Ψ is unitary
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If ΨΨ⋆ = Ψ⋆Ψ is normal

Recall, the position vector R in three dimension is given by R = xi + yj + zk =
∑

j cjxj ,

where, c1 = x, c2 = y, c3 = z, and x1 = i, x2 = j, x3 = k, Okelo (2015). In the study

of properties of Hilbert space operators and their application in Schrödinger equation, Okelo

(2015) used unconventional vector quantity and properties of Hilbert space to express one-

dimensional time dependent wave function Ψ(x, t) as a vector | Ψ⟩. That is,

⟨Ψ | Ψ⟩ =
∫ ∞

−∞
⟨Ψ⋆(x, t),Ψ(x, t)⟩dt = 1 (4.62)

If the particle is lying somewhere in a space S, that is, x ∈ S. Then the characteristic function

XS (x) = 1. If not, then XS (x) = 0 and x /∈ S (Gagne, 2013). For a particle moving in R3,

the wave function Ψ is in Hilbert space L2(R3). If the function Ψ(x, t) of position x at time

t, the probability particle to be found at the position x is determined using Gaussian integral

as follows:

pr(Ψ, x) ∈ S =
∫∞
−∞⟨Ψ(x, t) | d3x, |,

∫∞
−∞ Ψ(x, t)⟩d3x

=
∫∞
−∞⟨Ψ(x, t) | . | Ψ(x, t)⟩d3x

=
∫∞
−∞⟨Ψ(x, t) | . | Ψ(x, t)⟩d3x

=
∫∞
−∞⟨Ψ(x, t) | Ψ(x, t)⟩d3x

=

∫ ∞

−∞
⟨Ψ(x, t),Ψ(x, t)⟩d3x ∈ R3 (4.63)

Equation (4.62) shows how to determine the probability position of a particle in 3-dimension

4.3.2 Determination ofMomentumof a Particle usingOperators inHilbert

Space
In quantummechanics, the momentum P̂ is an operator whichmaps the wave functionΨ(x, t)

in the Hilbert space representing quantum state to another function. Recall, momentum oper-

ator is defined as,

P ′ = −iℏ ∂
∂x

(4.64)

Using the concept of correlation of properties of Hilbert space operators with momentum, the

Fourier transform of Ψ(x) in momentum representation is illustrated as
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⟨P,Ψ⟩ =
∫
⟨P, x⟩⟨x,Ψ⟩dx. (4.65)

Inserting a complete set of momentum states we obtain

⟨x, ⟨P̂ , Ψ̂⟩⟩ =
∫

⟨P, x⟩⟨P,Ψ⟩P̂ dP =

∫
P ⟨x, P ⟩⟨P,Ψ⟩dp. (4.66)

From the equation (4.63) we have

⟨P | x | P ⟩ = ℏ
i

∂

∂x

∫
⟨x | P ⟩. (4.67)

Therefore, equation (4.66) becomes

⟨x, ⟨P̂ ,Ψ⟩⟩ = ⟨P, x⟩⟨P,Ψ⟩dP
∫

ℏ
i

∂

∂x
. (4.68)

It is trivial that Ψ(x, t) = Ψ0e
−i(kx−ωt) from equation (4.51). The momentum operator op-

erating on a wave function is given by, P (Ψ). Since both wave function and momentum are

vectors, then vector properties hold. These properties include:

(a) The property of scalar product

P (Ψ) = ⟨P | . | Ψ⟩ = ΨP | Ψ⟩ = ⟨P,Ψ⟩

= iℏ⟨∇,Ψ⟩

= iℏ⟨∇,Ψ0⟩e−i(kx−ωt)

⟨P,Ψ⟩ = ℏkΨ

⟨P,Ψ⋆Ψ⟩ = ℏk. (4.69)

Therefore, ⟨P,Ψ⋆Ψ⟩ = ℏk is a scalar product.

(b) The self adjointness

Since momentum is a quantum observable the property of self adjointness holds. The mo-

mentum of a particle is given by the product of mass and velocity. Since velocity is a vector

quantity then v ∈ S. Therefore, p = mv and from the above property of scalar product, the

momentum operator operating on a wave function can be determined as follows
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⟨P,Ψ⟩ = iℏ⟨∇,Ψ0⟩e−i(kx−ωt). (4.70)

4.3.3 Determination of theEnergy of a Particle usingOperators inHilbert

Space
The operator P is defined as hermitian if its r, s matrix element has the property

Prs =

∫
Ψ⋆

rPΨsdτ =

∫
(PΨr)

⋆Ψrdτ =

∫
Ψr(PΨr)

⋆dτ =

∫
[Ψ⋆

s(PΨ
⋆
r)]

⋆dτ = P ⋆
sr.

(4.71)

In other words, the matrix elements related by the leading diagonal of P are complex conju-

gates of each other. Operators that are Hermitian enjoy certain properties. The Hamiltonian

(energy) operator is Hermitian, and so are the various angular momentum operators. In order

to show this, first recall that the Hamiltonian is composed of a kinetic energy part which is

essentially P 2

2m
and a set of potential energy terms which involve the distance coordinates x, y

etc. If we can prove that the various terms comprising the Hamiltonian are Hermitian then

the whole Hamiltonian is Hermitian.

Energy is quantum observable, therefore the property of self adjointness holds. The energy of

a particle is an eigenvalue of Hamiltonian operator. In quantum mechanics, the Hamiltonian

operator is the sum of kinetic energy and potential energy.

Ĥ = ˆK.E + ˆP.E (4.72)

Ĥ =
p̂2

2m
+ ˆP.E, (4.73)

where p̂ = −iℏ ∂
∂x

Therefore,K.E = − ℏ2
2m

⟨∇x∇x,Ψ(x, t)⟩ for a particle in 1dimension (Wei, 2016) . Generally,

the potential energy is denoted by V̂ , therefore the total energy of a particle in three dimension

is be given by

⟨H,Ψ⟩ = − ℏ2

2m
⟨⟨∇,∇⟩,Ψ(x, t)⟩+ ⟨V,Ψ(x, t)⟩. (4.74)
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CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion
Operators in Hilbert space have been studied in the past decades. These operators possess

properties which are of interest study in Quantum Mechanics. Schrödinger equation is key in

the study of Quantum Mechanics. This study focused on derivation of Schrödinger equation

using operators Hilbert space and we applied properties of Reimann’s integral, Neumann’s

integral, Lebesque Integral and the properties of Hilbert space operators. From these abstract

Mathematical properties, we obtained the Schrödinger equation as

−ℏ2
2m

⟨∇,∇⟩,Φ⟩ = iℏ ∂
∂t
Φ. (Refer to equation (4.61)

The correlation between operators in Hilbert space and electromagnetic wave equation is es-

tablished by utilizing the Maxwell’s equations as well as the properties of operators in Hilbert

space which include:

(i) Orthogonally property ⟨x, y⟩ = 0

(ii) Self- adjointness ⟨x, y⟩ = ¯⟨y, x⟩

(iii) Unitary ⟨x, x⋆⟩ = 1 iff x = x⋆

(iv) Positivity ⟨x, x⟩ ≥ 0 = ∥x∥2

(v) Nullity property ⟨x, x⟩ = 0 iff x = 0

Subsequently, using the electromagnetic wave equation and properties of Hilbert space oper-

ators Schrödinger equation was derived as illustrated in section (4.3).

Similarly, the correlation between Einstein theory of relativity and Hilbert space operators

was established and the results obtained were used in the derivation of Schrödinger equation

as an alternative approach.

On the application of operators in Hilbert space on Quantum observables i.e. energy, mo-

mentum and position, properties of Hilbert space operators are applied. These observables

are Hermitians operator which are one of the operators of Hilbert spaces. Other operators in
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Hilbert space have interesting features which make them applicable in describing quantum

observables. Hilbert space considers a function as point belonging to an infinite space.

In determining the probability position of a particle, the existing literature on the probability

position of a particle in a space is used as well as in a confined in a potential barrier is highly

considered. From the result the position of a particle in three- dimensions is applying the

properties of Hilbert space operators can be determined using the formula∫∞
−∞⟨Ψ(x, t),Ψ(x, t)⟩d3x ∈ R3 (refer to equation (4.62))

Total energy which is the second quantum observable is taken as a Hermitian operator which

is Hamiltonian. From our result, it is represented by the equation.

⟨H,Ψ⟩ = − ℏ2
2m

⟨U∇,∇⟩,Ψ(x, t)⟩+ ⟨V,Ψ(x, t)⟩ (refer to equation (4.74))

The other quantum observable is momentum which from the literature is defined as the prod-

uct of mass and velocity. Themomentum operator is represented by p̂which is also Hermitian.
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5.2 Recommendations for Further Research
In this study, we have determined alternative derivation of Schrödinger equation using prop-

erties of Hilbert space operators. Further the study has described the quantum observables of

a particle as solutions to the Schrodinger equation in Hilbert spaces. The study recommends

the derivation of of Schrodinger equation of many body intersecting particles and description

of quantum observables in Hilbert spaces.
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