CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 417: RADIATION AND NUCLEAR CHEMISTRY

STREAMS: BSC (CHEM) TIME: 2 HOURS

DAY/DATE: MONDAY 08/4/2019 11.30 A.M. – 1.30 P.M.

INSTRUCTIONS: Answer question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

(a) Define the following terms

[3 marks]

- (i) Isobars
- (ii) Isotones
- (iii) Exoergic
- (iv) Endoergic
- (v) Ionizing radiation
- (vi) Radioactive decay

H=1.0078

(b) Calculate the binding energy per nucleon of ${}^{4}_{2}He\,\dot{\iota}$ amu and

$$\int_{0}^{1} n = 1.0087, \frac{4}{2} H e = 4.0026 i$$
 [4]

marks]

(c) Write the symbolic equation of the following radioactive decay

CHEM 417

- (i) Alpha decay [1 mark]
- (ii) Double beta decay [1.5 marks]
- (iii) Position decay [1.5 marks]
- (iv) Electron capture [1 mark]
- (d) Predict the method of decay and the decay products for the following nuclei

 - $(ii) \qquad \begin{array}{c} 118 \\ 54 \end{array} Xe \longrightarrow$
 - (iii) $\begin{array}{c} 20 \\ 11 \end{array}$ Na \longrightarrow [3 marks]
- (e) Explain why internal radiation sources are more dangerous than external ones [2 marks]
- (f) Briefly discuss radiation effects in cells [4 marks]
- (g) Give three measures that are recommended to keep radiation exposure to minimum

marks]

(h) For the decay reaction $238_{\mu} \longrightarrow 234_{He} + 4 H_e$

Calculate the decay energy Q ^{238}U $^{\dot{c}}$ 238.0508, 4 $^{\dot{c}}$ = 4.0026 234 Th=234.0436 amu

(i) Give four nuclear reactions for an isotope that is off the belt of stability can use to be stable [2 marks]

[3 marks]

QUESTION TWO (20 MARKS)

(a) Calculate the binding energy of the last neutron in ²³⁵u

$$^{234}_{92}U + ^{I}_{O}n \longrightarrow ^{235}_{92}U$$

- (b) Using equations give two conservation laws in radioactive decay [4 marks]
- (c) Balance the following nuclear reactions

(i)
$$\begin{array}{c} 239 \\ 94 \end{array} Pu \longrightarrow \begin{array}{c} 4 \\ 2 \end{array} He + A$$

- (d) Discuss the interaction of radiation with
 - (i) Metals [2 marks]
 - (ii) Inorganic nonmetallic compounds [3 marks]
 - (iii) Water [4 marks]
- (e) Differentiate between gamma radiation and x-rays [2 marks]

QUESTION THREE (20 MARKS)

- (a) Draw a diagram showing the behaviour of radiation in a magnetic field [2 marks]
- (b) Differentiate between irradiation of aqueous solutions at concentrations $^{\dot{\iota}\,0.1}$ mol and aqueous solution greater than 0.1 molL
- (c) Briefly discuss the following dosimeters
 - (i) Condenser ion chamber [2 marks]
 - (ii) Chemical dosimeters [2 marks]
 - (iii) Photographic emulsions [2 marks]
- (d) Give three criteria which must be fulfilled in radiation processes [3 marks]
- (e) Briefly discus the application of radiochemistry in
 - (i) Ecological studies
 - (ii) Life sciences
 - (iii) Physiological and metabolic studies

[6 marks]

QUESTION FOUR (20 MARKS)

- (a) Discuss the following nuclear radiation detectors
 - (i) Gas filled detectors
 - (ii) Proportional counters

CHEM 417

	(iii)	Gelger-muller counters	[6 marks]
(b)	Discuss the radiochemical laboratories type A, type B and C according to the		
	Intern	national Atomic Energy Agency (IAEA)	[6 marks]
(c)	Write short notes on		
	(i)	Single Proton Emission Tomography (SPET)	
	(ii)	Positron Emission Tomography (PEF)	
(d)	Give two applications of radiation in industrial radiation processing		[2 marks]