**CHUKA** 



# **UNIVERSITY**

## **UNIVERSITY EXAMINATIONS**

# FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

CHEM 102: GENERAL INORGANIC AND PHYSICAL CHEMISTRY

STREAMS: BSC TIME: 2 HOURS

DAY/DATE: FRIDAY 06/12/2019 11.30 A.M. – 1.30 P.M.

### **INSTRUCTIONS:**

• Answer question ONE and any other TWO questions

## **QUESTION ONE (30 MARKS)**

a) Define the following terms

(2 marks)

- i. Mass number
- ii. Isotopes
- b) The isotopes and abundances of silicon are given below. Calculate the average atomic mass of silicon (2 marks)

| Si-28 | 27.977 amu | 92.34% |
|-------|------------|--------|
| Si-29 | 28.977 amu | 4.70%  |
| Si-30 | 29.974 amu | 2.96%  |

c) For the tin atom 118 50 Sn determine the following;

(2 marks)

- i. atomic number
- ii. mass number;
- iii. number of electrons
- iv. number of neutrons

# CHEM 102

| d)   | Calculate the number of molecules that are contained in a 325-mg tablet of aspir molar mass 180.2 g/mol)                                                                                                                                                                                                                 | rin (C H O ,<br>(2 marks)  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| e)   | Calculate the concentration of a solution formed by diluting 25.0 mL of a 3.8 M glucose solution to 275 Ml. (2 marks)                                                                                                                                                                                                    |                            |
| f)   | Lead is a poisonous metal that especially affects children because they retain a larger fraction of lead than adults do. Lead levels of 0.25 ppm in a child cause delayed cognitive development. Determine the moles of lead present in 1.00 g of a child's blood would 0.25 ppm present (RFM Pb=207.2 g/mol). (3 marks) |                            |
| g)   | g) Consider the following species: PCl <sub>3</sub> ; BF <sub>3</sub> ; CO <sub>2</sub> ; CO <sub>3</sub> <sup>2-</sup>                                                                                                                                                                                                  |                            |
|      | i. Write the Lewis structures of each the species                                                                                                                                                                                                                                                                        | (4 marks)                  |
|      | ii. Draw resonance structures for ${\rm CO_3}^{2-}$                                                                                                                                                                                                                                                                      | (1 marks)                  |
|      | iii. Determine the molecular geometries of PCl <sub>3</sub> , BF <sub>3</sub> and CO <sub>2</sub>                                                                                                                                                                                                                        | (3 marks)                  |
|      | iv. Determine the hybridization of the central atom in PCl <sub>3</sub> , BF <sub>3</sub> and CO <sub>2</sub>                                                                                                                                                                                                            | (3 marks)                  |
| h)   | Calculate, at 25°C, the $[H^+]$ and pH of a tap water sample in which $[OH^-] = 2.0$                                                                                                                                                                                                                                     | 10 <sup>-7</sup> (3 marks) |
| i)   | Balance the following redox equation                                                                                                                                                                                                                                                                                     |                            |
|      | $Fe^{2+} + MnO_4$ $Fe^{3+} + Mn^{2+}$ (acidic conditions) (3 n                                                                                                                                                                                                                                                           | narks)                     |
| QUES | TION TWO (20 MARKS)                                                                                                                                                                                                                                                                                                      |                            |
| a.   | State the Pauli's exclusion principle                                                                                                                                                                                                                                                                                    | (1 mark)                   |
| b.   | Write the ground state electronic configuration of;                                                                                                                                                                                                                                                                      |                            |

Sulfur atom (S=16)

i.

### **CHEM 102**

- ii.  $Fe^{2+}$  ion (Fe=26) (2 marks)
- c. Explain briefly how the following properties of the elements vary across a period and down a group in the periodic table (6 marks)
  - i. Atomic radius
  - ii. Ionization energy
  - iii. Electronegativity
- d. The periodic table shows the arrangement of elements according to the atomic numbers.

(3 marks)

- i. What do the elements in the same group have in common?
- ii. What do elements in the same period have in common?
- iii. Explain why metals are generally electropositive while non-metals are electronegative
- e. Wine is produced by the fermentation of grapes. In fermentation, the carbohydrate glucose ( $C_6H_{12}O_6$ ) is converted to ethanol and carbon dioxide according to the given balanced equation. Determine the grams of ethanol ( $C_2H_6O$ , molar mass 46.1 g/mol) that are produced from 5.00 mol of glucose. (4 marks)

$$C_6H_{12}O_6(aq) \longrightarrow 2 C_2H_6O(aq) + 2 CO_2(g)$$
  
glucose ethanol

- f. A student prepares a sample of hydrogen gas by electrolyzing water at 25°C. She collects 152 mL of H<sub>2</sub> at a total pressure of 758 mm Hg. Taking the vapor pressure of water at 25°C to be 23.76 mm Hg, calculate; (4 marks)
  - i. The partial pressure of hydrogen.
  - ii. The number of moles of hydrogen collected.

### **QUESTION THREE (20 MARKS)**

a. Carbon monoxide absorbs energy with a frequency of  $6.510^{10} \, \mathrm{s}^{\text{-1}}$ . (3 marks)

#### **CHEM 102**

- i. Calculate the wavelength of the absorption
- ii. Find the energy absorbed by one photon
  - b. Calculate the wavelength in nanometers of a transition in a hydrogen atom from n=2 to n=5 ( $R_H=1.09710^{-2}$  nm<sup>-1</sup>) (2 marks)
    - c. Aspirin, a commonly used pain reliever, is a weak organic acid whose molecular formula may be written as  $HC_9H_7O_4$  (Mw = 180.15 g/mol). An aqueous solution of aspirin has total volume 350.0 mL and contains 1.26 g of aspirin. The pH of the solution is found to be 2.60. Calculate Ka (the dissociation constant) for aspirin. (4 marks)
    - d. Hexamethylenediamine (MM = 116.2 g/mol), a compound made up of carbon, hydrogen, and nitrogen atoms, is used in the production of nylon. When 6.315 g of hexamethylenediamine is burned in oxygen, 14.36 g of carbon dioxide and 7.832 g of water are obtained. Determine the simplest and molecular formulas of this compound? (6 marks)
  - e. Explain how the real gases deviate from the ideal gases in obeying the ideal gas law. (2 marks)
  - f. Sulfur hexafluoride is a gas used as a long-term tamponade (plug) for a retinal hole to repair detached retinas in the eye. If 2.50 g of this compound is introduced into an evacuated 500.0-mL container at 83°C, calculate the pressure (in atmospheres) that is developed. (3 marks)

### **QUESTION FOUR (20 MARKS)**

a. For the reaction given below, indicate the Brønsted-Lowry acid, base, conjugate acid and conjugate base. (2 marks)

$$HNO_{2(aq)} + OH_{(aq)} \rightleftharpoons NO_{2}(aq) + H_{2}O$$

b. Solution A has a pH of 12.32. Solution B has [H<sup>+</sup>] three times as large as that of solution A. Solution C has a pH half that of solution A.

i. Calculate the [H<sup>+</sup>] for all three solutions.

(5 marks)

ii. Calculate the pH of solutions B and C.

(2 marks)

iii. Classify each solution as acidic, basic, or neutral.

(3 marks)

c. Consider the following reaction.

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

- i. Write the expression for the equilibrium constant (K). (1 mark)
- ii. Calculate K using the following concentrations of each substance at equilibrium: [H2] = 0.95 M;

$$[I_2] = 0.78 \text{ M}; [HI] = 0.27 \text{ M}.$$

(2 marks)

d. Consider the endothermic conversion of oxygen to ozone:  $3O_2(g) \rightleftharpoons 2 \ O_3(g)$ . Briefly explain the

effects of each of the following changes on the direction of equilibrium.

(2 marks)

- (i) Decrease [O<sub>3</sub>] (iii) decrease temperature
- (ii) Decrease [O<sub>2</sub>] (iv) increase pressure
- e. The following data were measured for the reduction of nitric oxide with hydrogen  $2NO(g) + 2H_2(g)$   $N_2(g) + 2H_2O(g)$

| Initial concentration(mol L <sup>-1</sup> ) |         | Initial rate of formation of H <sub>2</sub> O (mol L <sup>-1</sup> ) |
|---------------------------------------------|---------|----------------------------------------------------------------------|
| [NO]                                        | $[H_2]$ |                                                                      |
| 0.10                                        | 0.10    | 1.2310 <sup>-3</sup>                                                 |
| 0.10                                        | 0.20    | $2.46\ 10^{-3}$                                                      |
| 0.20                                        | 0.10    | 4.92 10 <sup>-3</sup>                                                |

Calculate the rate law for the reaction.

(3 marks)