CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD DEGREE OF SCIENCE IN MATHEMATICS (PURE)

MATH 806: ABSTRACT INTEGRATION II

STREAM: MATH Y1S2 TIME: 3 HOURS

DAY/DATE: THURSDAY 9/04/2020 11.30 A.M - 230 P.M.

INSTRUCTIONS:

Answer ANY THREE Questions.

QUESTION ONE: (20 MARKS)

- (a) State without proof
- (i) The Radon-Nikodym Theorem

(2 Marks)

(ii) Fubini's Theorem

- (2 Marks)
- (b) Let (X, \mathfrak{x}, μ) be a measure space and f be a measurable function on X for which $\int f d\mu$. Prove that the set function $\nu : \mathfrak{x} \to \mathbb{R}^*$ defined by $\nu(E) = \int_E f d\mu$, $\forall E \in \mathfrak{x}$ is a signed measure. (4 Marks)
- (c) Let ν a signed measure on (X, \mathfrak{x}) and $E \in \mathfrak{x}$ such that $0 < \nu(E) < \infty$. Prove that there exists a measurable subset A of E which is positive with respect to ν and more so $0 < \nu(E) < \infty$ (12 Marks)

QUESTION TWO: (20 MARKS)

- (a) Let (X, \mathfrak{x}) be a measurable space and v, μ be finite measures on \mathfrak{x} . Prove that $v << \mu$, that is, v is absolutely continuous with respect to μ if and only if for each $\varepsilon > 0 \ni \delta > 0$ such that for $E \in \mathfrak{x}$ and $\mu(E) < \varepsilon$ it implies $\nu(E) < \delta$ (6 Marks)
- (b) Prove that if the set E is positive with respect to the measure ν it implies that every measurable subset A of E has a positive measure, $\nu(A) \ge 0$ but the converse is not necessarily true. (4 Marks)
- (c) Let (X, \mathfrak{x}) be a measurable space and v a signed measure on \mathfrak{x} . Define the Jordan Decomposition of v. Hence show that the Jordan Decomposition of v is unique, that is, each signed measure v on (X, \mathfrak{x}) has a unique Jordan representation, namely $\{v^+, v^-\}$ (10 Marks)

QUESTION THREE: (20 MARKS)

- (a) State and prove the Lebesque's Decomposition Theorem (14 Marks)
- (b) Illustrate using an appropriate example that the measure μ is finite is a necessary condition in the Radon-Nikodym Theorem. (6 Marks)

QUESTION FOUR: (20 MARKS)

- (a) Let X be a non-void set and $\mathfrak A$ an algebra of subsets of X and μ a measure on the algebra. Let μ^* be the outer measure induced by μ . Show that μ^* extends μ on. Hence state without proof the Caratheodory's Extension Theorem (10 Marks)
- (b) Let X, Y be non-void sets. Define the following
 - (i) A measurable rectangle of $X \times Y$
 - (ii) An elementary set E in $X \times Y$
 - (iii) The X –section of $E \subseteq X \times Y$ (3 Marks)
- (c) Define a monotone class on a non-void set X. Prove that the σ -algebra generated by the class R of all measurable rectangles of $X \times Y$ is the smallest monotonic class containing the set of all elementary subsets of $X \times Y$ (7 Marks)

......