Show simple item record

dc.contributor.authorMusundi, Sammy 1
dc.contributor.authorShem, Aywa 2
dc.contributor.authorFourie, Jan 3
dc.contributor.authorMatuya, John Wanyonyi 4
dc.date.accessioned2020-10-05T10:33:42Z
dc.date.available2020-10-05T10:33:42Z
dc.date.issued2012
dc.identifier.citationJournal of Mathematical Sciences: Advances and Applications Volume 18, Number 1-2en_US
dc.identifier.urihttp://41.89.101.166:8080/xmlui/bitstream/handle/123456789/2601/Dr%20Matuya%201.pdf?sequence=1&isAllowed=y
dc.identifier.urihttp://repository.chuka.ac.ke/handle/chuka/1376
dc.description.abstractAbstract Let Lw ′ denote the assignment which associates with each pair of Banach spaces X , Y , the vector space Lw ′ ( X , Y ) and K ( X , Y ) be the space of all compact linear operators from X to Y. Let T ∈ Lw ′ ( X , Y ) and suppose (Tn ) ⊂ K ( X , Y ) converges in the dual weak operator topology (w′) of T. Denote by K u ((Tn )) the finite number given by K u ((Tn )) := sup { max { Tn , T − 2Tn }} . n∈N ′ The u-norm on Lw ( X , Y ) is then given by T u := inf { K u ((Tn )) : T = w′ − lim Tn , n Tn ∈ K ( X , Y )}. ′ It has been shown that ( Lw ( X , Y ) . u ) is a Banach operator ideal. We find ′ conditions for K ( X , Y ) to be an unconditional ideal in ( Lw ( X , Y ) . u ) .en_US
dc.language.isoenen_US
dc.publisherScientific Advances Publishersen_US
dc.titleUnconditional Banach Space Ideal Property’’en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record