Show simple item record

dc.contributor.authorMaraka, K.
dc.contributor.authorMusundi, W.S.
dc.contributor.authorNyaga, L.N.
dc.date.accessioned2022-11-02T08:20:39Z
dc.date.available2022-11-02T08:20:39Z
dc.date.issued2021-12
dc.identifier.issn2456-477X
dc.identifier.urihttp://repository.chuka.ac.ke/handle/chuka/15491
dc.description.abstractIn this paper, we investigate some transitivity action properties of the cartesian product of the alternating group 𝐴𝑛 (𝑛 ≥ 5) acting on a cartesian product of ordered sets of triples using the Orbit-Stabilizer Theorem by showing that the length of the orbit (𝑝, 𝑠, 𝑣) in 𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛, (𝑛 ≥ 5) acting on 𝑃 [3] × 𝑆 [3] × 𝑉 [3] is equivalent to the cardinality of 𝑃 [3] × 𝑆 [3] × 𝑉 [3] to imply transitivity.en_US
dc.language.isoenen_US
dc.publisherAsian Research Journal of Mathematicsen_US
dc.subjectOrbitsen_US
dc.subjectstabilizeren_US
dc.subjecttransitivity actionen_US
dc.subjectordered sets of triplesen_US
dc.subjectcartesian producten_US
dc.subjectfixed pointen_US
dc.titleTransitivity Action of the Cartesian Product of the Alternating Group Acting on a Cartesian Product of Ordered Sets of Triplesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record