Show simple item record

dc.contributor.authorO. Shikuku, Bonface
dc.contributor.authorKiruki, Silas
dc.contributor.authorKuria, Eric
dc.contributor.authorMayo, Domnic
dc.contributor.authorO. Ogolla, Fredrick
dc.date.accessioned2023-10-30T09:32:40Z
dc.date.available2023-10-30T09:32:40Z
dc.date.issued2023-08-04
dc.identifier.issn2582-0516
dc.identifier.urihttp://repository.chuka.ac.ke/handle/chuka/15753
dc.description.abstractThe escalating concern over antibiotic resistance and its profound impact on public health have underscored the urgent need to explore alternative reservoirs of antimicrobial agents. In this regard, Actinomycetes have emerged as a compelling area of investigation due to their remarkable capacity to produce bioactive compounds. Therefore, this study sought to investigate the influence of pH and various carbon and nitrogen sources on the antibacterial activity of Actinomycetes isolates collected from Lake Elementaita and River Tana. By examining the effects of these factors, we aimed to gain insights into the optimization of growth conditions and nutrient availability to enhance the production of bioactive compounds with potent antibacterial properties. The Actinomycetes isolates used in this study were from Lake Elementaita and River Tana, known for their diverse ecological characteristics and potential as sources of bioactive compounds. The isolates were subjected to morphological, biochemical, and molecular techniques to ensure accurate identification. To assess the antibacterial activity of the Actinomycetes isolates, they were tested against E. coli using the agar well diffusion method. The independent variables examined in this study were pH levels (4, 7, and 9) as well as different carbon sources (fructose and sucrose) and nitrogen sources (urea and sodium nitrate). The diameter of the inhibition zones served as the dependent variable. The data collected on the effects of pH and nutrients on the inhibition zones of Actinomycetes isolates were subjected to statistical analysis. One-way ANOVA was performed to assess significant differences in antibacterial activity among the isolates under different carbon and nitrogen preference. Mean values were compared using the LSD test at a significance level (α) of 0.05. Furthermore, the Kruskal-Wallis test was utilized to analyze the pH preferences of the Actinomycetes isolates at a significance level (α) of 0.05. The results showed that pH significantly influenced the bioactivity of the Actinomycetes isolates, with pH 7 exhibiting the highest inhibition zones against E. coli. The isolates displayed varied antibacterial activities depending on the carbon and nitrogen sources provided. Sucrose was the most preferred carbon source, followed by fructose, while urea was the preferred nitrogen source, followed by sodium nitrate. The study concluded that pH and nutrient availability play crucial roles in determining the antibacterial activity of Actinomycetes isolates. Other than contributing to our in-depth understanding of the factors influencing the antimicrobial potential of Actinomycetes, the results of this study highlight the importance of optimizing growth conditions and nutrient availability to enhance the production of bioactive compounds with potent antibacterial properties. Further investigations and exploration of Actinomycetes from diverse environments are recommended to discover new bioactive molecules for combating antibiotic resistance.en_US
dc.language.isoenen_US
dc.publisherAsian Journal of Research in Biochemistryen_US
dc.relation.ispartofseriesAsian Journal of Research in Biochemistry;AJRB.103760
dc.subjectActinomycetesen_US
dc.subjectantibacterial activityen_US
dc.subjectpHen_US
dc.subjectcarbonen_US
dc.subjectsourcesen_US
dc.titleEffect of pH, Carbon and Nitrogen Sources on Antibiotic Production by Actinomycetes Isolates from River Tana and Lake Elementaita, Kenyaen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record