Show simple item record

dc.contributor.authorOhuru, Priscah M.
dc.contributor.authorMusundi, Sammy W. *
dc.contributor.authorOmbaka, C. Ochieng
dc.date.accessioned2020-09-30T14:23:09Z
dc.date.available2020-09-30T14:23:09Z
dc.date.issued2019-03-25
dc.identifier.citationInternational Journal of Modern Mathematical Sciences, 2019, 17(1): 40-48en_US
dc.identifier.issn2166-286X
dc.identifier.urihttps://www.researchgate.net/publication/332543193
dc.identifier.urihttp://repository.chuka.ac.ke/handle/chuka/879
dc.description.abstractThe numerical range has been studied extensively in Hilbert spaces. Properties of the numerical range such as non-emptiness, containment of the spectrum and in particular, convexity have been proved and results have been given in these spaces. Furthermore, comparison of the numerical ranges with the spectra have been established. In this study, we consider the Banach space numerical range for a linear operator based on the definition by Lumer (1961) and establish its properties in relation to the above stated. Properties of the corresponding Banach numerical radius and spectrum are also discussed. (1) (PDF) On the Banach Space Numerical Range for a Linear Operator. Available from: https://www.researchgate.net/publication/332543193_On_the_Banach_Space_Numerical_Range_for_a_Linear_Operator [accessed Sep 30 2020].en_US
dc.language.isoenen_US
dc.publisherModern Scientific Press Company, Florida, USAen_US
dc.subjectNumerical Rangeen_US
dc.subjectNumerical Radiusen_US
dc.subjectSpectrumen_US
dc.subjectBanach Spaceen_US
dc.titleOn the Banach Space Numerical Range for a Linear Operator ",en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record