Show simple item record

dc.contributor.authorIsaiah, N. Sitati 1
dc.contributor.authorMusundi, Sammy W. 2*
dc.contributor.authorNzimbi, Bernard M. 3
dc.contributor.authorKikete, W. Dennis 3
dc.date.accessioned2020-10-01T12:02:31Z
dc.date.available2020-10-01T12:02:31Z
dc.date.issued2015-01
dc.identifier.citationInternational Journal of Mathematical Archive-6 (7), 2015, 49-54en_US
dc.identifier.issn229 – 5046
dc.identifier.urihttps://www.researchgate.net/publication/282150717
dc.identifier.urihttp://repository.chuka.ac.ke/handle/chuka/916
dc.description.abstractIn this paper we introduce the notion of Quasi-similarity of bounded linear operators in Hilbert Spaces. We do so by defining a quasi-affinity from one Hilbert Space H to K. Some results on quasi-affinities are also discussed. It has already been shown that on a finite dimensional Hilbert Space, quasi similarity is an equivalence relation that is; it is reflexive, symmetric and also transitive. Using the definition of commutants of two operators, we give an alternative result to show that quasi similarity is an equivalence relation on an infinite dimensional Hilbert Space. Finally, we establish the relationship between quasi similarity and almost similarity equivalence relations in Hilbert Spacesen_US
dc.language.isoenen_US
dc.subjectQuasi-similarityen_US
dc.subjectQuasi affinitiesen_US
dc.subjectEquivalence Relationsen_US
dc.subjectCommutantsen_US
dc.titleA note on quasi-similarity of operators in Hilbert spacesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record